Smith normal forms of incidence matrices

被引:6
|
作者
Sin, Peter [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
Smith normal form; incidence matrix; adjacency matrix; P-RANKS; ELEMENTARY DIVISORS; PERMUTATION MODULES; INVARIANT FACTORS; SUBSPACES;
D O I
10.1007/s11425-013-4643-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A brief introduction is given to the topic of Smith normal forms of incidence matrices. A general discussion of techniques is illustrated by some classical examples. Some recent advances are described and the limits of our current understanding are indicated.
引用
收藏
页码:1359 / 1371
页数:13
相关论文
共 50 条
  • [1] Smith normal forms of incidence matrices
    Peter Sin
    Science China Mathematics, 2013, 56 : 1359 - 1371
  • [2] Smith normal forms of incidence matrices
    SIN Peter
    Science China(Mathematics), 2013, 56 (07) : 1359 - 1371
  • [3] On Smith normal forms of q-Varchenko matrices
    Boulware, N.
    Jing, N.
    Misra, K. C.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 34 (02): : 187 - 222
  • [4] Computing Hermite and Smith normal forms of triangular integer matrices
    Storjohann, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 282 (1-3) : 25 - 45
  • [5] Smith forms of circulant polynomial matrices
    Telloni, Agnese Ilaria
    Williams, Gerald
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 559 - 572
  • [6] On the Smith normal form of walk matrices
    Wang, Wei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 612 : 30 - 41
  • [7] Smith Normal Form and acyclic matrices
    Kim, In-Jae
    Shader, Bryan L.
    Journal of Algebraic Combinatorics, 2009, 29 (01): : 63 - 80
  • [8] Smith Normal Form and acyclic matrices
    Kim, In-Jae
    Shader, Bryan L.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 29 (01) : 63 - 80
  • [9] Smith Normal Form and acyclic matrices
    In-Jae Kim
    Bryan L. Shader
    Journal of Algebraic Combinatorics, 2009, 29 : 63 - 80
  • [10] On the Smith normal form of walk matrices
    Wang, Wei
    Linear Algebra and Its Applications, 2021, 612 : 30 - 41