On subscalarity of some 2 x 2 class A operator matrices

被引:3
|
作者
Jung, Sungeun [1 ]
Kim, Yoenha [1 ]
Ko, Eungil [2 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
[2] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Subscalar; Class A operator; Invariant subspace; HYPONORMAL-OPERATORS;
D O I
10.1016/j.laa.2012.08.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide some conditions for 2 x 2 operator matrices whose diagonal entries are class A operators to be subscalar. As a corollary, we get that such operators with rich spectra have nontrivial invariant subspaces. In addition, we show that the tensor product of a 2 x 2 upper triangular class A operator matrix and a class A operator has a scalar extension. Finally, we find some subscalar 2 x 2 operator matrices satisfying the operator equations ABA = A(2) and BAB = B-2. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1322 / 1338
页数:17
相关论文
共 50 条
  • [41] EIGENVALUES AND VIRTUAL LEVELS OF A FAMILY OF 2 x 2 OPERATOR MATRICES
    Rasulov, Tulkin H.
    Dilmurodov, Elyor B.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2019, 25 (03): : 273 - 281
  • [42] Refined and generalized numerical radius inequalities for 2 x 2 operator matrices
    Bani-Domi, Watheq
    Kittaneh, Fuad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 624 (624) : 364 - 386
  • [43] Further inequalities for the Α-numerical radius of certain 2 x 2 operator matrices
    Feki, Kais
    Sahoo, Satyajit
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (02) : 213 - 226
  • [44] POLYNOMIAL OPERATOR MATRICES AS SEMIGROUP GENERATORS - THE 2X2 CASE
    ENGEL, KJ
    MATHEMATISCHE ANNALEN, 1989, 284 (04) : 563 - 576
  • [45] ε-Pseudo Weak-Demicompactness for 2 x 2 Block Operator Matrices
    Chtourou, Ines
    Krichen, Bilel
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2024, 15 (02) : 1 - 17
  • [46] Inequalities for operator space numerical radius of 2 x 2 block matrices
    Moslehian, Mohammad Sal
    Sattari, Mostafa
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (01)
  • [47] On Upper Triangular Operator 2 x 2 Matrices Over C*-Algebras
    Ivkovic, Stefan
    FILOMAT, 2020, 34 (03) : 691 - 706
  • [48] On the geometry of the quadratic numerical range for 2 x 2 block operator matrices
    Li, Rongfang
    Wu, Deyu
    Chen, Alatancang
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (07): : 1315 - 1328
  • [49] On stability of closedness and self-adjointness for 2 x 2 operator matrices
    Shkalikov, A. A.
    Trunk, C.
    MATHEMATICAL NOTES, 2016, 100 (5-6) : 870 - 875
  • [50] A novel numerical radius upper bounds for 2 x 2 operator matrices
    Al-Dolat, Mohammed
    Jaradat, Imad
    Al-Husban, Baraa
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06): : 1173 - 1184