On subscalarity of some 2 x 2 class A operator matrices

被引:3
|
作者
Jung, Sungeun [1 ]
Kim, Yoenha [1 ]
Ko, Eungil [2 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
[2] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Subscalar; Class A operator; Invariant subspace; HYPONORMAL-OPERATORS;
D O I
10.1016/j.laa.2012.08.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide some conditions for 2 x 2 operator matrices whose diagonal entries are class A operators to be subscalar. As a corollary, we get that such operators with rich spectra have nontrivial invariant subspaces. In addition, we show that the tensor product of a 2 x 2 upper triangular class A operator matrix and a class A operator has a scalar extension. Finally, we find some subscalar 2 x 2 operator matrices satisfying the operator equations ABA = A(2) and BAB = B-2. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1322 / 1338
页数:17
相关论文
共 50 条
  • [31] Operator interpretation of resonance arising in spectral problems for 2 x 2 operator matrices
    Mennicken, R
    Motovilov, AK
    MATHEMATISCHE NACHRICHTEN, 1999, 201 : 117 - 181
  • [32] SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 x 2 OPERATOR MATRICES
    Bani-Domi, Watheq
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (35): : 433 - 442
  • [33] Invertible completions of 2 x 2 upper triangular operator matrices
    Han, JK
    Lee, HY
    Lee, WY
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) : 119 - 123
  • [34] Numerical Radius Inequalities for Certain 2 x 2 Operator Matrices
    Hirzallah, Omar
    Kittaneh, Fuad
    Shebrawi, Khalid
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (01) : 129 - 147
  • [35] The boundedness below of 2 x 2 upper triangular operator matrices
    Hwang, IS
    Lee, WY
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 39 (03) : 267 - 276
  • [36] Main Properties of the Faddeev Equation for 2 x 2 Operator Matrices
    Rasulov, T. H.
    Dilmurodov, E. B.
    RUSSIAN MATHEMATICS, 2023, 67 (12) : 47 - 52
  • [37] A-Berezin Number Inequalities for 2 x 2 Operator Matrices
    Zamani, Ali
    Sahoo, Satyajit
    Tapdigoglu, Ramiz
    Garaev, Mubariz
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [38] On A-numerical radius inequalities for 2 x 2 operator matrices
    Chandra Rout, Nirmal
    Sahoo, Satyajit
    Mishra, Debasisha
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14): : 2672 - 2692
  • [39] GENERALIZED NUMERICAL RADIUS INEQUALITIES FOR 2 x 2 OPERATOR MATRICES
    Bani-Domi, Watheq
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 31 - 38
  • [40] Numerical radius inequalities for 2x2 operator matrices
    Hirzallah, Omar
    Kittaneh, Fuad
    Shebrawi, Khalid
    STUDIA MATHEMATICA, 2012, 210 (02) : 99 - 115