On subscalarity of some 2 x 2 class A operator matrices

被引:3
|
作者
Jung, Sungeun [1 ]
Kim, Yoenha [1 ]
Ko, Eungil [2 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
[2] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Subscalar; Class A operator; Invariant subspace; HYPONORMAL-OPERATORS;
D O I
10.1016/j.laa.2012.08.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide some conditions for 2 x 2 operator matrices whose diagonal entries are class A operators to be subscalar. As a corollary, we get that such operators with rich spectra have nontrivial invariant subspaces. In addition, we show that the tensor product of a 2 x 2 upper triangular class A operator matrix and a class A operator has a scalar extension. Finally, we find some subscalar 2 x 2 operator matrices satisfying the operator equations ABA = A(2) and BAB = B-2. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1322 / 1338
页数:17
相关论文
共 50 条
  • [21] Spectra of 2 x 2 Upper Triangular Operator Matrices
    Huang, Junjie
    Liu, Aichun
    Chen, Alatancang
    FILOMAT, 2016, 30 (13) : 3587 - 3599
  • [22] Threshold analysis for a family of 2 x 2 operator matrices
    Rasulov, T. H.
    Dilmurodov, E. B.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2019, 10 (06): : 616 - 622
  • [23] Local Spectral Property of 2 x 2 Operator Matrices
    Ko, Eungil
    FILOMAT, 2019, 33 (07) : 1845 - 1854
  • [24] Numerical radius inequalities of 2 x 2 operator matrices
    Bhunia, Pintu
    Paul, Kallol
    ADVANCES IN OPERATOR THEORY, 2023, 8 (01)
  • [25] Extended eigenvalues of 2 x 2 block operator matrices
    Ammar, Aymen
    Boutaf, Fatima Zohra
    Jeribi, Aref
    FILOMAT, 2023, 37 (05) : 1377 - 1389
  • [26] The semi-Fredholmness of 2 x 2 operator matrices
    Hai, Guojun
    Chen, Alatancang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (02) : 733 - 738
  • [27] PERTURBATION OF SPECTRUMS OF 2 X-2 OPERATOR MATRICES
    DU, HK
    PAN, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (03) : 761 - 766
  • [28] SOME GENERALIZATIONS OF NUMERICAL RADIUS ON OFF-DIAGONAL PART OF 2 x 2 OPERATOR MATRICES
    Hajmohamadi, Monire
    Lashkaripour, Rahmatollah
    Bakherad, Mojtaba
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 447 - 457
  • [29] Some Inequalities Involving Hilbert-Schmidt Numerical Radius on 2 x 2 Operator Matrices
    Hajmohamadi, Monire
    Lashkaripour, Rahmatollah
    FILOMAT, 2020, 34 (14) : 4649 - 4657
  • [30] FURTHER INEQUALITIES FOR OPERATOR SPACE NUMERICAL RADIUS ON 2 x 2 OPERATOR MATRICES
    Sattari, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (05): : 1281 - 1285