On subscalarity of some 2 x 2 class A operator matrices

被引:3
|
作者
Jung, Sungeun [1 ]
Kim, Yoenha [1 ]
Ko, Eungil [2 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
[2] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Subscalar; Class A operator; Invariant subspace; HYPONORMAL-OPERATORS;
D O I
10.1016/j.laa.2012.08.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we provide some conditions for 2 x 2 operator matrices whose diagonal entries are class A operators to be subscalar. As a corollary, we get that such operators with rich spectra have nontrivial invariant subspaces. In addition, we show that the tensor product of a 2 x 2 upper triangular class A operator matrix and a class A operator has a scalar extension. Finally, we find some subscalar 2 x 2 operator matrices satisfying the operator equations ABA = A(2) and BAB = B-2. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1322 / 1338
页数:17
相关论文
共 50 条
  • [1] On Subscalarity of Some 2 x 2 M-Hyponormal Operator Matrices
    Zuo, Fei
    Shen, Junli
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [2] Hyperinvariant Subspaces for Some 2 x 2 Operator Matrices
    Jung, Il Bong
    Ko, Eungil
    Pearcy, Carl
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (03): : 489 - 494
  • [3] Perturbation of spectra for a class of 2x2 operator matrices
    Alatancang
    Hou, Guo-lin
    Hai, Guo-jun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (04): : 711 - 720
  • [4] Hyperinvariant Subspaces for Some 2 x 2 Operator Matrices, II
    Jung, Il Bong
    Ko, Eungil
    Pearcy, Carl
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (02): : 225 - 231
  • [5] ON 2 x 2 OPERATOR MATRICES
    Jung, Sungeun
    Kim, Yoenha
    Ko, Eungil
    OPERATORS AND MATRICES, 2011, 5 (03): : 365 - 388
  • [6] Some New Berezin Number Inequalities for 2 x 2 Operator Matrices
    Guesba, Messaoud
    Kittaneh, Fuad
    Yamanc, Ulas
    VIETNAM JOURNAL OF MATHEMATICS, 2024,
  • [7] Some selfadjoint 2 x 2 operator matrices associated with closed operators
    Ota, S
    Schmüdgen, K
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2003, 45 (04) : 475 - 484
  • [8] SOME REFINEMENTS OF NUMERICAL RADIUS INEQUALITIES FOR 2 x 2 OPERATOR MATRICES
    Qiao, Hongwei
    Hai, Guojun
    Bai, Eburilitu
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 425 - 444
  • [9] SOME GENERALIZATIONS OF NUMERICAL RADIUS INEQUALITIES FOR 2 x 2 OPERATOR MATRICES
    Yang, Chaojun
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2025, 19 (01): : 247 - 259
  • [10] Weylness of 2 x 2 operator matrices
    Wu, Xiufeng
    Huang, Junjie
    Chen, Alatancang
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (01) : 187 - 203