Computing Approximate GCD of Univariate Polynomials

被引:5
|
作者
Khare, S. R. [1 ]
Pillai, H. K. [1 ]
Belur, M. N. [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
关键词
Approximate GCD of polynomials; Nullspace of a Polynomial Matrix; SVD; Structured Low Rank Approximation (SLRA); GREATEST COMMON DIVISOR; COMPUTATION; SYLVESTER; MATRIX;
D O I
10.1109/MED.2010.5547707
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we discuss the problem of computing the approximate GCD of two univariate polynomials. We construct a linearly structured resultant matrix from given polynomials. We show the equivalence of the full rank property of this resultant matrix and the coprimeness of the polynomials. Further we show that the nearest structured low rank approximation (SLRA) of the resultant matrix gives the approximate GCD of the polynomials. We formulate the problem of computing the nearest SLRA as an optimization problem on a smooth manifold, namely the unit sphere SN-1 in R-N.
引用
收藏
页码:437 / 441
页数:5
相关论文
共 50 条
  • [41] Approximate polynomial GCD over integers
    Nagasaka, Kosaku
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (12) : 1306 - 1317
  • [42] Computing Nearest Gcd with Certification
    Cheze, Guillaume
    Yakoubsohn, Jean-Claude
    Galligo, Andre
    Mourrain, Bernard
    SNC'09: PROCEEDINGS OF THE 2009 INTERNATIONAL WORKSHOP ON SYMBOLIC-NUMERIC COMPUTATION, 2009, : 29 - 34
  • [43] Sparse Shifts for Univariate Polynomials
    Y. N. Lakshman
    B. David Saunders
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 561 - 562
  • [44] Positive univariate trace polynomials
    Klep, Igor
    Pascoe, James Eldred
    Volcic, Jurij
    JOURNAL OF ALGEBRA, 2021, 579 : 303 - 317
  • [45] Differentiation matrices for univariate polynomials
    Amirhossein Amiraslani
    Robert M. Corless
    Madhusoodan Gunasingam
    Numerical Algorithms, 2020, 83 : 1 - 31
  • [46] On Bounds For The Zeros of Univariate Polynomials
    Dehmer, Matthias
    Kilian, Juergen
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 20, 2007, 20 : 205 - +
  • [47] Sparse shifts for univariate polynomials
    Lakshman, YN
    Saunders, BD
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (05) : 351 - 364
  • [48] Zeros of univariate interval polynomials
    Fan, Xuchuan
    Deng, Jiansong
    Chen, Falai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 216 (02) : 563 - 573
  • [49] Counting Decomposable Univariate Polynomials
    Von Zur Gathen, Joachim
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (01): : 294 - 328
  • [50] ZERO SETS OF UNIVARIATE POLYNOMIALS
    Lubarsky, Robert S.
    Richman, Fred
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (12) : 6619 - 6632