Computing Approximate GCD of Univariate Polynomials

被引:5
|
作者
Khare, S. R. [1 ]
Pillai, H. K. [1 ]
Belur, M. N. [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
关键词
Approximate GCD of polynomials; Nullspace of a Polynomial Matrix; SVD; Structured Low Rank Approximation (SLRA); GREATEST COMMON DIVISOR; COMPUTATION; SYLVESTER; MATRIX;
D O I
10.1109/MED.2010.5547707
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we discuss the problem of computing the approximate GCD of two univariate polynomials. We construct a linearly structured resultant matrix from given polynomials. We show the equivalence of the full rank property of this resultant matrix and the coprimeness of the polynomials. Further we show that the nearest structured low rank approximation (SLRA) of the resultant matrix gives the approximate GCD of the polynomials. We formulate the problem of computing the nearest SLRA as an optimization problem on a smooth manifold, namely the unit sphere SN-1 in R-N.
引用
收藏
页码:437 / 441
页数:5
相关论文
共 50 条
  • [11] GPGCD, an Iterative Method for Calculating Approximate GCD, for Multiple Univariate Polynomials
    Terui, Akira
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2010, 6244 : 238 - 249
  • [12] The ERES method for computing the approximate GCD of several polynomials
    Christou, D.
    Karcanias, N.
    Mitrouli, M.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (1-2) : 94 - 114
  • [13] Computing multiple roots of polynomials in stochastic arithmetic with Newton method and approximate GCD
    Graillat, Stef
    Jezequel, Fabienne
    Martins, Enzo Queiros
    Spyropoulos, Maxime
    2021 23RD INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2021), 2021, : 45 - 51
  • [14] On approximate GCDs of univariate polynomials
    Karmarkar, NK
    Lakshman, YN
    JOURNAL OF SYMBOLIC COMPUTATION, 1998, 26 (06) : 653 - 666
  • [15] Algorithm for computing μ-bases of univariate polynomials
    Hong, Hoon
    Hough, Zachary
    Kogan, Irina A.
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 80 : 844 - 874
  • [16] SLRA Interpolation for Approximate GCD of Several Multivariate Polynomials
    Nagasaka, Kosaku
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 470 - 479
  • [17] Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
    Min Tang
    Bingyu Li
    Zhenbing Zeng
    Journal of Systems Science and Complexity, 2018, 31 : 552 - 568
  • [18] Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
    Tang, Min
    Li, Bingyu
    Zeng, Zhenbing
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2018, 31 (02) : 552 - 568
  • [19] Computing Multivariate Approximate GCD Based on Barnett's Theorem
    Sanuki, Masaru
    SNC'09: PROCEEDINGS OF THE 2009 INTERNATIONAL WORKSHOP ON SYMBOLIC-NUMERIC COMPUTATION, 2009, : 149 - 157
  • [20] Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
    TANG Min
    LI Bingyu
    ZENG Zhenbing
    JournalofSystemsScience&Complexity, 2018, 31 (02) : 552 - 568