Computing Approximate GCD of Univariate Polynomials

被引:5
|
作者
Khare, S. R. [1 ]
Pillai, H. K. [1 ]
Belur, M. N. [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
关键词
Approximate GCD of polynomials; Nullspace of a Polynomial Matrix; SVD; Structured Low Rank Approximation (SLRA); GREATEST COMMON DIVISOR; COMPUTATION; SYLVESTER; MATRIX;
D O I
10.1109/MED.2010.5547707
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we discuss the problem of computing the approximate GCD of two univariate polynomials. We construct a linearly structured resultant matrix from given polynomials. We show the equivalence of the full rank property of this resultant matrix and the coprimeness of the polynomials. Further we show that the nearest structured low rank approximation (SLRA) of the resultant matrix gives the approximate GCD of the polynomials. We formulate the problem of computing the nearest SLRA as an optimization problem on a smooth manifold, namely the unit sphere SN-1 in R-N.
引用
收藏
页码:437 / 441
页数:5
相关论文
共 50 条
  • [31] Approximate GCD A La Dedieu
    Yakoubsohn, Jean-Claude
    Masmoudi, Mohamed
    Cheze, Guillaume
    Auroux, Didier
    APPLIED MATHEMATICS E-NOTES, 2011, 11 : 244 - 248
  • [32] Approximate GCD in Lagrange bases
    Sevyeri, Leili Rafiee
    Corless, Robert M.
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 40 - 47
  • [33] Resultant properties of gcd of many polynomials and a factorization representation of gcd
    Fatouros, S
    Karcanias, N
    INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (16) : 1666 - 1683
  • [34] Binary GCD algorithm for computing error locator polynomials in Reed-Solomon decoding
    Argüello, F
    ELECTRONICS LETTERS, 2005, 41 (13) : 754 - 755
  • [35] Approximate GCD in Bernstein basis
    Corless, Robert M.
    Sevyeri, Leili Rafiee
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2019, 53 (03): : 103 - 106
  • [36] Computing Approximate Greatest Common Right Divisors of Differential Polynomials
    Mark Giesbrecht
    Joseph Haraldson
    Erich Kaltofen
    Foundations of Computational Mathematics, 2020, 20 : 331 - 366
  • [37] Computing Approximate Greatest Common Right Divisors of Differential Polynomials
    Giesbrecht, Mark
    Haraldson, Joseph
    Kaltofen, Erich
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2020, 20 (02) : 331 - 366
  • [38] On the GCD sequence of two integral polynomials
    Vekemans, D
    AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (05): : 458 - 458
  • [39] A subspace method for the computation of the GCD of polynomials
    Qiu, WZ
    Hua, YB
    AbedMeraim, K
    AUTOMATICA, 1997, 33 (04) : 741 - 743
  • [40] Approximate GCD by relaxed NewtonSLRA algorithm
    Nagasaka, Kosaku
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2021, 55 (03): : 97 - 101