Spatiotemporal Dynamics in a Reaction-Diffusion Epidemic Model with a Time-Delay in Transmission

被引:13
|
作者
Cai, Yongli [1 ,2 ]
Yan, Shuling [3 ]
Wang, Hailing [4 ]
Lian, Xinze [1 ]
Wang, Weiming [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[4] Hubei Univ Nationalities, Dept Math, Enshi 445000, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Epidemic model; time-delay; bifurcation; pattern formation; NONLINEAR INCIDENCE RATES; PREDATOR-PREY SYSTEM; PATTERN-FORMATION; GLOBAL STABILITY; BIFURCATION; POPULATION; PLANKTON; SIR; INSTABILITIES; BEHAVIOR;
D O I
10.1142/S0218127415500996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the effects of time-delay and diffusion on the disease dynamics in an epidemic model analytically and numerically. We give the conditions of Hopf and Turing bifurcations in a spatial domain. From the results of mathematical analysis and numerical simulations, we find that for unequal diffusive coefficients, time-delay and diffusion may induce that Turing instability results in stationary Turing patterns, Hopf instability results in spiral wave patterns, and Hopf-Turing instability results in chaotic wave patterns. Our results well extend the findings of spatiotemporal dynamics in the delayed reaction-diffusion epidemic model, and show that time-delay has a strong impact on the pattern formation of the reaction-diffusion epidemic model.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Finite-time boundary stabilization of the reaction-diffusion system with switching time-delay input
    Ghaderi, Najmeh
    Keyanpour, Mohammad
    Mojallali, Hamed
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2021, 44 (02) : 353 - 367
  • [42] A time-periodic reaction-diffusion epidemic model with infection period
    Zhang, Liang
    Wang, Zhi-Cheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (05):
  • [43] A reaction-diffusion SIS epidemic model in a time-periodic environment
    Peng, Rui
    Zhao, Xiao-Qiang
    NONLINEARITY, 2012, 25 (05) : 1451 - 1471
  • [44] DELAY REACTION-DIFFUSION EQUATION FOR INFECTION DYNAMICS
    Bessonov, Nick
    Bocharov, Gennady
    Touaoula, Tarik Mohammed
    Trofimchuk, Sergei
    Volpert, Vitaly
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (05): : 2073 - 2091
  • [45] TRANSIENT SPATIOTEMPORAL CHAOS IN A REACTION-DIFFUSION MODEL
    WACKER, A
    BOSE, S
    SCHOLL, E
    EUROPHYSICS LETTERS, 1995, 31 (5-6): : 257 - 262
  • [46] Global solutions for bistable degenerate reaction-diffusion equation with time-delay and nonlocal effect
    Yang, Jiaqi
    Liu, Changchun
    Mei, Ming
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [47] THRESHOLD DYNAMICS OF A REACTION-DIFFUSION CHOLERA MODEL WITH SEASONALITY AND NONLOCAL DELAY
    Wu, Wenjing
    Jiang, Tianli
    Liu, Weiwei
    Wang, Jinliang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (10) : 3263 - 3282
  • [48] Pattern dynamics of a predator–prey reaction–diffusion model with spatiotemporal delay
    Jian Xu
    Gaoxiang Yang
    Hongguang Xi
    Jianzhong Su
    Nonlinear Dynamics, 2015, 81 : 2155 - 2163
  • [49] Turing patterns in a reaction-diffusion epidemic model
    Jia, Yanfei
    Cai, Yongli
    Shi, Hongbo
    Fu, Shengmao
    Wang, Weiming
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (02)