Spatiotemporal Dynamics in a Reaction-Diffusion Epidemic Model with a Time-Delay in Transmission

被引:13
|
作者
Cai, Yongli [1 ,2 ]
Yan, Shuling [3 ]
Wang, Hailing [4 ]
Lian, Xinze [1 ]
Wang, Weiming [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[4] Hubei Univ Nationalities, Dept Math, Enshi 445000, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Epidemic model; time-delay; bifurcation; pattern formation; NONLINEAR INCIDENCE RATES; PREDATOR-PREY SYSTEM; PATTERN-FORMATION; GLOBAL STABILITY; BIFURCATION; POPULATION; PLANKTON; SIR; INSTABILITIES; BEHAVIOR;
D O I
10.1142/S0218127415500996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the effects of time-delay and diffusion on the disease dynamics in an epidemic model analytically and numerically. We give the conditions of Hopf and Turing bifurcations in a spatial domain. From the results of mathematical analysis and numerical simulations, we find that for unequal diffusive coefficients, time-delay and diffusion may induce that Turing instability results in stationary Turing patterns, Hopf instability results in spiral wave patterns, and Hopf-Turing instability results in chaotic wave patterns. Our results well extend the findings of spatiotemporal dynamics in the delayed reaction-diffusion epidemic model, and show that time-delay has a strong impact on the pattern formation of the reaction-diffusion epidemic model.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Controlling spatiotemporal dynamics with time-delay feedback
    Bleich, ME
    Socolar, JES
    PHYSICAL REVIEW E, 1996, 54 (01): : R17 - R20
  • [32] Dynamics of a reaction-diffusion epidemic model with general incidence and protection awareness for multi-transmission pathways
    Shen, Jingyun
    Wang, Shengfu
    Nie, Linfei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [33] Spatiotemporal dynamics in a reaction-diffusion toxic-phytoplankton-zooplankton model
    Rao, Feng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [34] DYNAMICS AND SPATIOTEMPORAL PATTERN FORMATIONS OF A HOMOGENEOUS REACTION-DIFFUSION THOMAS MODEL
    Zhang, Hongyan
    Liu, Siyu
    Zhang, Yue
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1149 - 1164
  • [35] SPATIOTEMPORAL DYNAMICS OF A REACTION-DIFFUSION SCHISTOSOMIASIS MODEL WITH SEASONAL AND NONLOCAL TRANSMISSIONS
    Fang, Cheng
    Wu, Peng
    Geng, Yunfeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [36] Bifurcation phenomena in a single-species reaction-diffusion model with spatiotemporal delay
    Yang, Gaoxiang
    Li, Xiaoyu
    AIMS MATHEMATICS, 2021, 6 (07): : 6687 - 6698
  • [37] Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model
    Deng, Keng
    Wu, Yixiang
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 929 - 946
  • [38] Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth
    Chenwei Tian
    Qingyan Shi
    Xinping Cui
    Jingzhe Guo
    Zhenbiao Yang
    Junping Shi
    Journal of Mathematical Biology, 2019, 79 : 1319 - 1355
  • [39] Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth
    Tian, Chenwei
    Shi, Qingyan
    Cui, Xinping
    Guo, Jingzhe
    Yang, Zhenbiao
    Shi, Junping
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 79 (04) : 1319 - 1355
  • [40] On Nonlinear Reaction-Diffusion Model with Time Delay on Hexagonal Lattice
    Martsenyuk, Vasyl
    Veselska, Olga
    SYMMETRY-BASEL, 2019, 11 (06):