Spatiotemporal Dynamics in a Reaction-Diffusion Epidemic Model with a Time-Delay in Transmission

被引:13
|
作者
Cai, Yongli [1 ,2 ]
Yan, Shuling [3 ]
Wang, Hailing [4 ]
Lian, Xinze [1 ]
Wang, Weiming [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[4] Hubei Univ Nationalities, Dept Math, Enshi 445000, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Epidemic model; time-delay; bifurcation; pattern formation; NONLINEAR INCIDENCE RATES; PREDATOR-PREY SYSTEM; PATTERN-FORMATION; GLOBAL STABILITY; BIFURCATION; POPULATION; PLANKTON; SIR; INSTABILITIES; BEHAVIOR;
D O I
10.1142/S0218127415500996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the effects of time-delay and diffusion on the disease dynamics in an epidemic model analytically and numerically. We give the conditions of Hopf and Turing bifurcations in a spatial domain. From the results of mathematical analysis and numerical simulations, we find that for unequal diffusive coefficients, time-delay and diffusion may induce that Turing instability results in stationary Turing patterns, Hopf instability results in spiral wave patterns, and Hopf-Turing instability results in chaotic wave patterns. Our results well extend the findings of spatiotemporal dynamics in the delayed reaction-diffusion epidemic model, and show that time-delay has a strong impact on the pattern formation of the reaction-diffusion epidemic model.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] DYNAMICS OF A REACTION-DIFFUSION SIS EPIDEMIC MODEL WITH A CONTROL ZONE
    Hu, Yaru
    Jin, Yu
    Wang, Jinfeng
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (06) : 2569 - 2589
  • [22] THRESHOLD DYNAMICS OF A REACTION-DIFFUSION EPIDEMIC MODEL WITH STAGE STRUCTURE
    Zhang, Liang
    Wang, Zhi-Cheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (10): : 3797 - 3820
  • [23] Dynamics on a degenerated reaction-diffusion Zika transmission model
    Ren, Xinzhi
    Wang, Kaifa
    Liu, Xianning
    APPLIED MATHEMATICS LETTERS, 2024, 150
  • [24] Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission
    Zhao, Lin
    Huo, Haifeng
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 6012 - 6033
  • [25] PROPAGATION DYNAMICS OF A NONLOCAL TIME-SPACE PERIODIC REACTION-DIFFUSION MODEL WITH DELAY
    Wang, Ning
    Wang, Zhi-Cheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (04) : 1599 - 1646
  • [26] PROPAGATION DYNAMICS FOR A TIME-PERIODIC REACTION-DIFFUSION TWO GROUP SIR EPIDEMIC MODEL
    Zhao, Lin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (03): : 908 - 934
  • [27] PROPAGATION DYNAMICS FOR A TIME-PERIODIC REACTION-DIFFUSION TWO GROUP SIR EPIDEMIC MODEL
    Zhao, Lin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (03): : 908 - 934
  • [29] Propagation dynamics for a time-periodic reaction-diffusion SI epidemic model with periodic recruitment
    Zhao, Lin
    Wang, Zhi-Cheng
    Zhang, Liang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [30] SPATIAL DYNAMICS OF A NONLOCAL REACTION-DIFFUSION EPIDEMIC MODEL IN TIME-SPACE PERIODIC HABITAT
    Xin, Ming-Zhen
    Wang, Bin-Guo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (08) : 2430 - 2465