Spatiotemporal Dynamics in a Reaction-Diffusion Epidemic Model with a Time-Delay in Transmission

被引:13
|
作者
Cai, Yongli [1 ,2 ]
Yan, Shuling [3 ]
Wang, Hailing [4 ]
Lian, Xinze [1 ]
Wang, Weiming [1 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[4] Hubei Univ Nationalities, Dept Math, Enshi 445000, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Epidemic model; time-delay; bifurcation; pattern formation; NONLINEAR INCIDENCE RATES; PREDATOR-PREY SYSTEM; PATTERN-FORMATION; GLOBAL STABILITY; BIFURCATION; POPULATION; PLANKTON; SIR; INSTABILITIES; BEHAVIOR;
D O I
10.1142/S0218127415500996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the effects of time-delay and diffusion on the disease dynamics in an epidemic model analytically and numerically. We give the conditions of Hopf and Turing bifurcations in a spatial domain. From the results of mathematical analysis and numerical simulations, we find that for unequal diffusive coefficients, time-delay and diffusion may induce that Turing instability results in stationary Turing patterns, Hopf instability results in spiral wave patterns, and Hopf-Turing instability results in chaotic wave patterns. Our results well extend the findings of spatiotemporal dynamics in the delayed reaction-diffusion epidemic model, and show that time-delay has a strong impact on the pattern formation of the reaction-diffusion epidemic model.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Spatiotemporal dynamics of a general reaction-diffusion model with time delay and nonlocal effect
    Xu, Xiuyan
    Liu, Ming
    Xu, Xiaofeng
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01):
  • [2] DYNAMICS OF AN SIS REACTION-DIFFUSION EPIDEMIC MODEL FOR DISEASE TRANSMISSION
    Huang, Wenzhang
    Han, Maoan
    Liu, Kaiyu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2010, 7 (01) : 51 - 66
  • [3] Spatiotemporal dynamics of a reaction-diffusion epidemic model with nonlinear incidence rate
    Cai, Yongli
    Wang, Weiming
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [4] The impact of media on the spatiotemporal pattern dynamics of a reaction-diffusion epidemic model
    Meng, Xin-You
    Zhang, Tao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 4034 - 4047
  • [5] Controlling spatiotemporal chaos in oscillatory reaction-diffusion systems by time-delay autosynchronization
    Abteilung Physikalische Chemie, Fritz-Haber-Inst. Max-Planck-G., Faradayweg 4-6, 14195 Berlin, Germany
    1600, 173-184 (December 1, 2004):
  • [6] Controlling spatiotemporal chaos in oscillatory reaction-diffusion systems by time-delay auto synchronization
    Beta, C
    Mikhailov, AS
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 199 (1-2) : 173 - 184
  • [7] Global dynamics of a reaction-diffusion brucellosis model with spatiotemporal heterogeneity and nonlocal delay
    Liu, Shu-Min
    Bai, Zhenguo
    Sun, Gui-Quan
    NONLINEARITY, 2023, 36 (11) : 5699 - 5730
  • [8] Pattern dynamics of a predator-prey reaction-diffusion model with spatiotemporal delay
    Xu, Jian
    Yang, Gaoxiang
    Xi, Hongguang
    Su, Jianzhong
    NONLINEAR DYNAMICS, 2015, 81 (04) : 2155 - 2163
  • [9] Complex dynamics of a reaction-diffusion epidemic model
    Wang, Weiming
    Cai, Yongli
    Wu, Mingjiang
    Wang, Kaifa
    Li, Zhenqing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (05) : 2240 - 2258
  • [10] Long-time dynamics of an SIRS reaction-diffusion epidemic model
    Li, Bo
    Bie, Qunyi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1910 - 1926