BAYESIAN FINITE POPULATION IMPUTATION FOR DATA FUSION

被引:12
|
作者
Reiter, Jerome P. [1 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Confidentiality; disclosure; matching; multiple; sharing; synthetic; MULTIPLE IMPUTATION; FILE CONCATENATION; ADJUSTED WEIGHTS;
D O I
10.5705/ss.2010.140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In data fusion, data owners seek to combine datasets with disjoint observations and distinct variables to estimate relationships among the variables. One approach is to concatenate the files, specify models relating the variables not jointly observed, and use the models to generate multiple imputations of the missing data. We show that the standard multiple imputation estimator of the sampling variance can have positive bias in such contexts. We present an approach for correcting this problem based on Bayesian finite population inference. We also present an approach for data fusion when some values are confidential and cannot be shared.
引用
收藏
页码:795 / 811
页数:17
相关论文
共 50 条
  • [41] Bayesian Kernelized Matrix Factorization for Spatiotemporal Traffic Data Imputation and Kriging
    Lei, Mengying
    Labbe, Aurelie
    Wu, Yuankai
    Sun, Lijun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 18962 - 18974
  • [42] Qualification of traffic data by Bayesian Network Data Fusion
    Junghans, Marek
    Jentschel, Hans-Joachim
    2007 PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2007, : 17 - 23
  • [43] Bayesian methods for finite population sampling.
    Chechile, RA
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1998, 42 (04) : 525 - 525
  • [44] A FINITE POPULATION BAYESIAN MODEL FOR COMPLIANCE TESTING
    GODFREY, JT
    ANDREWS, RW
    JOURNAL OF ACCOUNTING RESEARCH, 1982, 20 (02) : 304 - 315
  • [45] Applications of the Bayesian Bootstrap in Finite Population Inference
    Aitkin, Murray
    JOURNAL OF OFFICIAL STATISTICS, 2008, 24 (01) : 21 - 51
  • [46] Integrated data analysis for fusion: A Bayesian tutorial for fusion diagnosticians
    Dinklage, Andreas
    Dreier, Heiko
    Fischer, Rainer
    Gori, Silvio
    Preuss, Roland
    von Toussaint, Udo
    BURNING PLASMA DIAGNOSTICS, 2008, 988 : 471 - 480
  • [47] Imputation in data fusion of heterogeneous data sets a model-based numerical experiment
    Berchtold, Andre
    Jeannin, Andre
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (07) : 1316 - 1328
  • [48] Nonlinear Heterogeneous Bayesian Decentralized Data Fusion
    Dagan, Ofer
    Cinquini, Tycho L.
    Ahmed, Nisar R.
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 9262 - 9268
  • [49] Fusion of LWIR sensor data by Bayesian methods
    Inguva, R
    Garrison, G
    SENSOR FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS II, 1998, 3376 : 161 - 174
  • [50] Sensors Data Fusion via Bayesian Filter
    Vechet, Stanislav
    Krejsa, Jiri
    Ondrousek, Vit
    PROCEEDINGS OF 14TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (EPE-PEMC 2010), 2010,