BAYESIAN FINITE POPULATION IMPUTATION FOR DATA FUSION

被引:12
|
作者
Reiter, Jerome P. [1 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Confidentiality; disclosure; matching; multiple; sharing; synthetic; MULTIPLE IMPUTATION; FILE CONCATENATION; ADJUSTED WEIGHTS;
D O I
10.5705/ss.2010.140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In data fusion, data owners seek to combine datasets with disjoint observations and distinct variables to estimate relationships among the variables. One approach is to concatenate the files, specify models relating the variables not jointly observed, and use the models to generate multiple imputations of the missing data. We show that the standard multiple imputation estimator of the sampling variance can have positive bias in such contexts. We present an approach for correcting this problem based on Bayesian finite population inference. We also present an approach for data fusion when some values are confidential and cannot be shared.
引用
收藏
页码:795 / 811
页数:17
相关论文
共 50 条
  • [31] Multiply Imputed Synthetic Data: Evaluation of Hierarchical Bayesian Imputation Models
    Graham, Patrick
    Young, Jim
    Penny, Richard
    JOURNAL OF OFFICIAL STATISTICS, 2009, 25 (02) : 245 - 268
  • [32] Bayesian nonparametric multiple imputation of partially observed data with ignorable nonresponse
    Paddock, SM
    BIOMETRIKA, 2002, 89 (03) : 529 - 538
  • [33] Missing Data Imputation With Bayesian Maximum Entropy for Internet of Things Applications
    Gonzalez-Vidal, Aurora
    Rathore, Punit
    Rao, Aravinda S.
    Mendoza-Bernal, Jose
    Palaniswami, Marimuthu
    Skarmeta-Gomez, Antonio F.
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (21) : 16108 - 16120
  • [34] A Bayesian multiple imputation approach to bivariate functional data with missing components
    Jang, Jeong Hoon
    Manatunga, Amita K.
    Chang, Changgee
    Long, Qi
    STATISTICS IN MEDICINE, 2021, 40 (22) : 4772 - 4793
  • [35] BAYESIAN CONTINUAL IMPUTATION AND PREDICTION FOR IRREGULARLY SAMPLED TIME SERIES DATA
    Guo, Yang
    Poh, Jeanette Wen Jun
    Wong, Cheryl Sze Yin
    Ramasamy, Savitha
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4493 - 4497
  • [36] Imputation of Truncated Tumor Growth Data Via Bayesian Mixed Modeling
    Bleile, M.
    Xing, Yixun
    Dan Nguyen
    Moore, Casey
    Saha, Debabrata
    Chen, Benjamin
    Story, Michael
    Timmerman, Robert
    Jiang, Steve
    Heitan, Daniel
    MEDICAL PHYSICS, 2022, 49 (06) : E694 - E695
  • [37] A Bayesian robust CP decomposition approach for missing traffic data imputation
    Zhu, Yun
    Wang, Weiye
    Yu, Gaohang
    Wang, Jun
    Tang, Lei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (23) : 33171 - 33184
  • [38] Imputation of attributes in networked data using Bayesian autocorrelation regression models
    Roeling, Mark Patrick
    Nicholls, Geoff K.
    SOCIAL NETWORKS, 2020, 62 : 24 - 32
  • [39] Optimal imputation of missing data for estimation of population mean
    Bhushan, Shashi
    Pandey, Abhay Pratap
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2016, 19 (06): : 755 - 766
  • [40] A Bayesian robust CP decomposition approach for missing traffic data imputation
    Yun Zhu
    Weiye Wang
    Gaohang Yu
    Jun Wang
    Lei Tang
    Multimedia Tools and Applications, 2022, 81 : 33171 - 33184