BAYESIAN FINITE POPULATION IMPUTATION FOR DATA FUSION

被引:12
|
作者
Reiter, Jerome P. [1 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Confidentiality; disclosure; matching; multiple; sharing; synthetic; MULTIPLE IMPUTATION; FILE CONCATENATION; ADJUSTED WEIGHTS;
D O I
10.5705/ss.2010.140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In data fusion, data owners seek to combine datasets with disjoint observations and distinct variables to estimate relationships among the variables. One approach is to concatenate the files, specify models relating the variables not jointly observed, and use the models to generate multiple imputations of the missing data. We show that the standard multiple imputation estimator of the sampling variance can have positive bias in such contexts. We present an approach for correcting this problem based on Bayesian finite population inference. We also present an approach for data fusion when some values are confidential and cannot be shared.
引用
收藏
页码:795 / 811
页数:17
相关论文
共 50 条
  • [21] Bayesian network data imputation with application to survival tree analysis
    Rancoita, Paola M. V.
    Zaffalon, Marco
    Zucca, Emanuele
    Bertoni, Francesco
    de Campos, Cassio P.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 373 - 387
  • [22] BACP: Bayesian Augmented CP Factorization for Traffic Data Imputation
    Huang, Rongping
    Gong, Wenwu
    Lu, Jiaxin
    Huang, Zhejun
    Yang, Lili
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 108 - 120
  • [23] Bayesian Latent Class Models for the Multiple Imputation of Categorical Data
    Vidotto, Davide
    Vermunt, Jeroen K.
    Van Deun, Katrijn
    METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2018, 14 (02) : 56 - 68
  • [24] Multivariate imputation of qualitative missing data using Bayesian networks
    Romero, V
    Salmerón, A
    SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 605 - 612
  • [25] Bayesian networks for imputation
    Di Zio, M
    Scanu, M
    Coppola, L
    Luzi, O
    Ponti, A
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2004, 167 : 309 - 322
  • [26] A Bayesian approach to NDT data fusion
    Gros, XE
    Strachan, P
    Lowden, DW
    INSIGHT, 1995, 37 (05) : 363 - +
  • [27] Bayesian Data Fusion With Shared Priors
    Wu, Peng
    Imbiriba, Tales
    Elvira, Victor
    Closas, Pau
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 275 - 288
  • [28] Bayesian approaches to data fusion in metrology
    Kelly, GP
    ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY V, 2001, 57 : 224 - 230
  • [29] Bayesian data analysis for fusion diagnostics
    Yoon, JS
    Fischer, R
    Gori, S
    Knauer, J
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (06) : 1544 - 1552
  • [30] Imputation of Truncated Tumor Growth Data Via Bayesian Mixed Modelling
    Bleile, M. L.
    Xing, Yixun
    Timmerman, Casey
    Nguyen, Dan
    Chen, Benjamin
    Story, Michael
    Timmerman, Robert
    Saha, Debabrata
    Jiang, Steve
    Heitjan, Daniel
    MEDICAL PHYSICS, 2021, 48 (06)