A note on Bayesian and frequentist parametric inference for a scalar parameter of interest

被引:0
|
作者
Wong, A. C. M. [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
关键词
Location-scale model; Marginal posterior distribution; r*-formula; Shrinkage argument; Signed log-likelihood ratio statistic; LOG LIKELIHOOD RATIO; MARGINAL TAIL PROBABILITIES; CONDITIONAL LIKELIHOOD; POINT ESTIMATION; APPROXIMATIONS; STATISTICS; DENSITIES; TESTS;
D O I
10.1016/j.spl.2012.10.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a new approximation of the marginal posterior distribution function is obtained. Moreover, for the location-scale model, by applying the shrinkage argument, a new approximation of the conditional distribution function of the signed likelihood ratio statistic given an ancillary statistic is derived from the approximated marginal posterior distribution. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:414 / 421
页数:8
相关论文
共 50 条
  • [41] A note on fiducial model averaging as an alternative to checking Bayesian and frequentist models
    Bickel, David R.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (13) : 3125 - 3137
  • [42] Efficient composite likelihood for a scalar parameter of interest
    Pace, Luigi
    Salvan, Alessandra
    Sartori, Nicola
    STAT, 2019, 8 (01):
  • [43] THE CONSTRUCTION OF COMBINED BAYESIAN-FREQUENTIST CONFIDENCE INTERVALS FOR A POSITIVE PARAMETER
    Akahira, M.
    Shimizu, A.
    Takeuchi, K.
    STATISTICA, 2005, 65 (04) : 351 - 365
  • [44] Frequentist and Bayesian inference for gas exchanges of drip-irrigated bell pepper
    Silva Santos, Fernando Andre
    Rezende, Roberto
    Wenneck, Gustavo Soares
    Santi, Danilo Cesar
    Saath, Reni
    PESQUISA AGROPECUARIA TROPICAL, 2021, 51
  • [45] Controlling the degree of caution in statistical inference with the Bayesian and frequentist approaches as opposite extremes
    Bickel, David R.
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 686 - 709
  • [46] Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials
    Angelini, Julia
    Belen Bortolotto, Eugenia
    Soledad Faviere, Gabriela
    Fabian Pairoba, Claudio
    Hugo Valentini, Gabriel
    Lucio Cervigni, Gerardo Domingo
    EUPHYTICA, 2022, 218 (08)
  • [47] Bayesian spectral likelihood for hydrological parameter inference
    Schaefli, Bettina
    Kavetski, Dmitri
    WATER RESOURCES RESEARCH, 2017, 53 (08) : 6857 - 6884
  • [48] A Bayesian Approach to Parameter Inference in Queueing Networks
    Wang, Weikun
    Casale, Giuliano
    Sutton, Charles
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2016, 27 (01):
  • [49] ABC random forests for Bayesian parameter inference
    Raynal, Louis
    Marin, Jean-Michel
    Pudlo, Pierre
    Ribatet, Mathieu
    Robert, Christian P.
    Estoup, Arnaud
    BIOINFORMATICS, 2019, 35 (10) : 1720 - 1728
  • [50] A Note on Bayesian Inference After Multiple Imputation
    Zhou, Xiang
    Reiter, Jerome P.
    AMERICAN STATISTICIAN, 2010, 64 (02): : 159 - 163