A note on Bayesian and frequentist parametric inference for a scalar parameter of interest

被引:0
|
作者
Wong, A. C. M. [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
关键词
Location-scale model; Marginal posterior distribution; r*-formula; Shrinkage argument; Signed log-likelihood ratio statistic; LOG LIKELIHOOD RATIO; MARGINAL TAIL PROBABILITIES; CONDITIONAL LIKELIHOOD; POINT ESTIMATION; APPROXIMATIONS; STATISTICS; DENSITIES; TESTS;
D O I
10.1016/j.spl.2012.10.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a new approximation of the marginal posterior distribution function is obtained. Moreover, for the location-scale model, by applying the shrinkage argument, a new approximation of the conditional distribution function of the signed likelihood ratio statistic given an ancillary statistic is derived from the approximated marginal posterior distribution. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:414 / 421
页数:8
相关论文
共 50 条
  • [21] Randomized statistical inference: A unified statistical inference frame of frequentist, fiducial, and Bayesian inference
    Zhongzhan Zhang
    Jiajia Dai
    Zhenhai Yang
    Science China Mathematics, 2020, 63 : 1007 - 1028
  • [22] BAYESIAN INFERENCE AND THE PARAMETRIC BOOTSTRAP
    Efron, Bradley
    ANNALS OF APPLIED STATISTICS, 2012, 6 (04): : 1971 - 1997
  • [23] Interpreting frequentist hypothesis tests: insights from Bayesian inference
    Sidebotham, David
    Barlow, C. Jake
    Martin, Janet
    Jones, Philip M.
    CANADIAN JOURNAL OF ANESTHESIA-JOURNAL CANADIEN D ANESTHESIE, 2023, 70 (10): : 1560 - 1575
  • [24] Frequentist performance of Bayesian inference with response-adaptive designs
    Lecoutre, Bruno
    Derzko, Gerard
    ElQasyr, Khadija
    STATISTICS IN MEDICINE, 2010, 29 (30) : 3219 - 3231
  • [25] A simple general formula for tail probabilities for frequentist and Bayesian inference
    Fraser, DAS
    Reid, N
    Wu, J
    BIOMETRIKA, 1999, 86 (02) : 249 - 264
  • [26] PROSPECT: a profile likelihood code for frequentist cosmological parameter inference
    Holm, Emil Brinch
    Nygaard, Andreas
    Dakin, Jeppe
    Hannestad, Steen
    Tram, Thomas
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 535 (04) : 3686 - 3699
  • [27] On Bayesian credible sets, restricted parameter spaces and frequentist coverage
    Marchand, Eric
    Strawderman, William E.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1419 - 1431
  • [28] Bayesian-Frequentist Hybrid Inference in Applications with Small Sample Sizes
    Han, Gang
    Santner, Thomas J.
    Lin, Haiqun
    Yuan, Ao
    AMERICAN STATISTICIAN, 2023, 77 (02): : 143 - 150
  • [29] Connecting Bayesian and frequentist quantification of parameter uncertainty in system identification
    Au, Siu-Kui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2012, 29 : 328 - 342
  • [30] Isoseparation and robustness in parametric Bayesian inference
    Smith, Jim Q.
    Rigat, Fabio
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2012, 64 (03) : 495 - 519