A note on Bayesian and frequentist parametric inference for a scalar parameter of interest

被引:0
|
作者
Wong, A. C. M. [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
关键词
Location-scale model; Marginal posterior distribution; r*-formula; Shrinkage argument; Signed log-likelihood ratio statistic; LOG LIKELIHOOD RATIO; MARGINAL TAIL PROBABILITIES; CONDITIONAL LIKELIHOOD; POINT ESTIMATION; APPROXIMATIONS; STATISTICS; DENSITIES; TESTS;
D O I
10.1016/j.spl.2012.10.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a new approximation of the marginal posterior distribution function is obtained. Moreover, for the location-scale model, by applying the shrinkage argument, a new approximation of the conditional distribution function of the signed likelihood ratio statistic given an ancillary statistic is derived from the approximated marginal posterior distribution. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:414 / 421
页数:8
相关论文
共 50 条
  • [31] Isoseparation and robustness in parametric Bayesian inference
    Jim Q. Smith
    Fabio Rigat
    Annals of the Institute of Statistical Mathematics, 2012, 64 : 495 - 519
  • [32] Bayesian parametric inference in a nonparametric framework
    Walker, Stephen G.
    Gutierrez-Pena, Eduardo
    TEST, 2007, 16 (01) : 188 - 197
  • [33] Bayesian parametric inference in a nonparametric framework
    Stephen G. Walker
    Eduardo Gutiérrez-Peña
    TEST, 2007, 16 : 188 - 197
  • [34] Bayesian Inference: Parameter Estimation for Inference in Small Samples
    Baig, Sabeeh A.
    NICOTINE & TOBACCO RESEARCH, 2022, 24 (06) : 937 - 941
  • [35] Bayesian and conditional frequentist testing of a parametric model versus nonparametric alternatives
    Berger, JO
    Guglielmi, A
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 174 - 184
  • [36] Cosmological Parameter Inference with Bayesian Statistics
    Padilla, Luis E.
    Tellez, Luis O.
    Escamilla, Luis A.
    Alberto Vazquez, Jose
    UNIVERSE, 2021, 7 (07)
  • [37] BAYESIAN INFERENCE FOR THE PARAMETER OF THE POWER DISTRIBUTION
    Kifayat, Tanveer
    Aslam, Muhammad
    Ali, Sajid
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2012, 5 (02): : 45 - 58
  • [38] A note on Bayesian inference in asset pricing
    Knight, JL
    Satchell, SE
    ECONOMETRIC THEORY, 2001, 17 (02) : 475 - 482
  • [39] Bayesian parameter inference for epithelial mechanics
    Yan, Xin
    Ogita, Goshi
    Ishihara, Shuji
    Sugimura, Kaoru
    JOURNAL OF THEORETICAL BIOLOGY, 2024, 595
  • [40] Frequentist and Bayesian Lasso Techniques for Parameter Selection in Nonlinearly Parameterized Models
    Coleman, Kayla D.
    Schmidt, Kathleen
    Smith, Ralph C.
    IFAC PAPERSONLINE, 2016, 49 (18): : 416 - 421