Burnett coefficients in quantum many-body systems

被引:5
|
作者
Steinigeweg, R. [1 ,2 ]
Prosen, T. [3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Theoret Phys, D-38106 Braunschweig, Germany
[2] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 05期
关键词
LORENTZ; TRANSPORT;
D O I
10.1103/PhysRevE.87.050103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Burnett coefficient B is investigated for transport in one-dimensional quantum many-body systems. Extensive numerical computations in spin-1/2 chains suggest a linear growth with time, B(t) similar to t, for nonintegrable chains exhibiting diffusive transport. For integrable spin chains in the metallic regime, on the other hand, we find a cubic growth with time, B(t) similar to -D(m)(2)t(3), with the proportionality constant being simply a square of the Drude weight D-m. The results are corroborated with additional studies in noninteracting quantum chains and in the classical limit of large-spin chains.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] SUBDYNAMICS OF CONSTRAINED MANY-BODY SYSTEMS AND THEORY OF TRANSPORT COEFFICIENTS
    BALESCU, R
    BRENIG, L
    WALLENBO.J
    PHYSICA, 1971, 52 (01): : 29 - &
  • [42] Nonlinear spectroscopy of controllable many-body quantum systems
    Gessner, Manuel
    Schlawin, Frank
    Haeffner, Hartmut
    Mukamel, Shaul
    Buchleitner, Andreas
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [43] Orthogonality Catastrophe in Dissipative Quantum Many-Body Systems
    Tonielli, F.
    Fazio, R.
    Diehl, S.
    Marino, J.
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)
  • [44] Localization and Glassy Dynamics Of Many-Body Quantum Systems
    Carleo, Giuseppe
    Becca, Federico
    Schiro, Marco
    Fabrizio, Michele
    SCIENTIFIC REPORTS, 2012, 2
  • [45] Engineered thermalization and cooling of quantum many-body systems
    Metcalf, Mekena
    Moussa, Jonathan E.
    de Jong, Wibe A.
    Sarovar, Mohan
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [46] Identifying the closeness of eigenstates in quantum many-body systems
    李海彬
    杨扬
    王沛
    王晓光
    Chinese Physics B, 2017, (08) : 70 - 77
  • [47] Geometric methods for nonlinear many-body quantum systems
    Lewin, Mathieu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (12) : 3535 - 3595
  • [48] Relaxation and thermalization of isolated many-body quantum systems
    Torres-Herrera, E. J.
    Kollmar, Davida
    Santos, Lea F.
    PHYSICA SCRIPTA, 2015, T165
  • [49] Characteristic length scales in quantum many-body systems
    Sañudo, J
    Pacheco, AF
    EUROPEAN JOURNAL OF PHYSICS, 2001, 22 (04) : 267 - 273
  • [50] General coordinate invariance in quantum many-body systems
    Brauner, Tomas
    Endlich, Solomon
    Monin, Alexander
    Penco, Riccardo
    PHYSICAL REVIEW D, 2014, 90 (10):