Burnett coefficients in quantum many-body systems

被引:5
|
作者
Steinigeweg, R. [1 ,2 ]
Prosen, T. [3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Theoret Phys, D-38106 Braunschweig, Germany
[2] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 05期
关键词
LORENTZ; TRANSPORT;
D O I
10.1103/PhysRevE.87.050103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Burnett coefficient B is investigated for transport in one-dimensional quantum many-body systems. Extensive numerical computations in spin-1/2 chains suggest a linear growth with time, B(t) similar to t, for nonintegrable chains exhibiting diffusive transport. For integrable spin chains in the metallic regime, on the other hand, we find a cubic growth with time, B(t) similar to -D(m)(2)t(3), with the proportionality constant being simply a square of the Drude weight D-m. The results are corroborated with additional studies in noninteracting quantum chains and in the classical limit of large-spin chains.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Quantum effects in many-body gravitating systems
    Golovko, VA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (29): : 6431 - 6446
  • [22] Effective Lagrangians for quantum many-body systems
    Jens O. Andersen
    Tomáš Brauner
    Christoph P. Hofmann
    Aleksi Vuorinen
    Journal of High Energy Physics, 2014
  • [23] THE ERGODIC BEHAVIOUR OF QUANTUM MANY-BODY SYSTEMS
    VANHOVE, L
    PHYSICA, 1959, 25 (04): : 268 - 276
  • [24] Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems
    Gherardini, Stefano
    De Chiara, Gabriele
    PRX QUANTUM, 2024, 5 (03):
  • [25] Emergence of Objectivity for Quantum Many-Body Systems
    Ollivier, Harold
    ENTROPY, 2022, 24 (02)
  • [26] Quantum Many-Body Systems in Thermal Equilibrium
    Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, Garching
    D-85748, Germany
    不详
    28049, Spain
    PRX. Quantum., 4
  • [27] Measure synchronization in quantum many-body systems
    Qiu, Haibo
    Julia-Diaz, Bruno
    Angel Garcia-March, Miguel
    Polls, Artur
    PHYSICAL REVIEW A, 2014, 90 (03)
  • [28] Effective Lagrangians for quantum many-body systems
    Andersen, Jens O.
    Brauner, Tomas
    Hofmann, Christoph P.
    Vuorinen, Aleksi
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [29] Gappability Index for Quantum Many-Body Systems
    Yao, Yuan
    Oshikawa, Masaki
    Furusaki, Akira
    PHYSICAL REVIEW LETTERS, 2022, 129 (01)
  • [30] Approach to typicality in many-body quantum systems
    Dubey, Shawn
    Silvestri, Luciano
    Finn, Justin
    Vinjanampathy, Sai
    Jacobs, Kurt
    PHYSICAL REVIEW E, 2012, 85 (01):