Burnett coefficients in quantum many-body systems

被引:5
|
作者
Steinigeweg, R. [1 ,2 ]
Prosen, T. [3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Theoret Phys, D-38106 Braunschweig, Germany
[2] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 05期
关键词
LORENTZ; TRANSPORT;
D O I
10.1103/PhysRevE.87.050103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Burnett coefficient B is investigated for transport in one-dimensional quantum many-body systems. Extensive numerical computations in spin-1/2 chains suggest a linear growth with time, B(t) similar to t, for nonintegrable chains exhibiting diffusive transport. For integrable spin chains in the metallic regime, on the other hand, we find a cubic growth with time, B(t) similar to -D(m)(2)t(3), with the proportionality constant being simply a square of the Drude weight D-m. The results are corroborated with additional studies in noninteracting quantum chains and in the classical limit of large-spin chains.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Equilibration time in many-body quantum systems
    Lezama, Talia L. M.
    Jonathan Torres-Herrera, E.
    Perez-Bernal, Francisco
    Bar Lev, Yevgeny
    Santos, Lea F.
    PHYSICAL REVIEW B, 2021, 104 (08)
  • [32] Parameter symmetries of quantum many-body systems
    Cejnar, P
    Geyer, HB
    PHYSICAL REVIEW C, 2001, 64 (03): : 343071 - 343077
  • [33] Entropy Minimization for Many-Body Quantum Systems
    Romain Duboscq
    Olivier Pinaud
    Journal of Statistical Physics, 2021, 185
  • [34] EXACTLY SOLVABLE QUANTUM MANY-BODY SYSTEMS
    CARMI, G
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (01): : 22 - +
  • [35] Simulating quantum dissipation in many-body systems
    Capriotti, L
    Cuccoli, A
    Fubini, A
    Tognetti, V
    Vaia, R
    EUROPHYSICS LETTERS, 2002, 58 (02): : 155 - 161
  • [36] Optimal Correlations in Many-Body Quantum Systems
    Amico, L.
    Rossini, D.
    Hamma, A.
    Korepin, V. E.
    PHYSICAL REVIEW LETTERS, 2012, 108 (24)
  • [37] Entanglement dynamics in quantum many-body systems
    Ho, Wen Wei
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2017, 95 (09)
  • [38] Aspects of Entanglement in Quantum Many-Body Systems
    Clark, John W.
    Habibian, Hessam
    Mandilara, Aikaterini D.
    Ristig, Manfred L.
    FOUNDATIONS OF PHYSICS, 2010, 40 (9-10) : 1200 - 1220
  • [39] Quantum information scrambling in quantum many-body scarred systems
    Yuan, Dong
    Zhang, Shun-Yao
    Wang, Yu
    Deng, Dong-Ling
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [40] Quantum neural networks to simulate many-body quantum systems
    Gardas, Bartlomiej
    Rams, Marek M.
    Dziarmaga, Jacek
    PHYSICAL REVIEW B, 2018, 98 (18)