Continuity results for parametric nonlinear singular Dirichlet problems

被引:12
|
作者
Bai, Yunru [1 ]
Motreanu, Dumitru [2 ]
Zeng, Shengda [1 ]
机构
[1] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Univ Perpignan, Dept Math, F-66860 Perpignan, France
基金
欧盟地平线“2020”;
关键词
Parametric singular elliptic equation; p-Laplacian; smallest solution; sequential continuity; monotonicity; MULTIPLE CONSTANT SIGN; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; NODAL SOLUTIONS; BIFURCATION; CONVECTION; EXISTENCE;
D O I
10.1515/anona-2020-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study from a qualitative point of view the nonlinear singular Dirichlet problem depending on a parameter lambda > 0 that was considered in [32]. Denoting by S-lambda the set of positive solutions of the problem corresponding to the parameter lambda, we establish the following essential properties of S lambda: (i) there exists a smallest element u(lambda)* in S-lambda, and the mapping lambda -> u(lambda)* is (strictly) increasing and left continuous; (ii) the set-valued mapping lambda -> S-lambda is sequentially continuous.
引用
收藏
页码:372 / 387
页数:16
相关论文
共 50 条
  • [1] Parametric nonlinear singular Dirichlet problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 239 - 254
  • [2] Positive solutions for nonlinear parametric singular Dirichlet problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    BULLETIN OF MATHEMATICAL SCIENCES, 2019, 9 (03)
  • [3] Parametric singular double phase Dirichlet problems
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [4] Some cases of weak continuity in nonlinear Dirichlet problems
    Boccardo, Lucio
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (10) : 3673 - 3687
  • [5] Nonlinear nonhomogeneous Dirichlet problems with singular and convection terms
    Papageorgiou, Nikolaos S.
    Zhang, Youpei
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [6] Nonlinear nonhomogeneous Dirichlet problems with singular and convection terms
    Nikolaos S. Papageorgiou
    Youpei Zhang
    Boundary Value Problems, 2020
  • [7] SINGULAR NONLINEAR DIRICHLET PROBLEMS - PRELIMINARY-REPORT
    CRANDALL, MG
    RABINOWITZ, PH
    TARTAR, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A130 - A130
  • [8] ON RADIALLY SYMMETRICAL SOLUTIONS TO SINGULAR NONLINEAR DIRICHLET PROBLEMS
    JIANG, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (02) : 159 - 163
  • [9] Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems
    Zhang, ZJ
    Cheng, JG
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (03) : 473 - 484
  • [10] EXACT BOUNDARY BEHAVIOR OF SOLUTIONS TO SINGULAR NONLINEAR DIRICHLET PROBLEMS
    Li, Bo
    Zhang, Zhijun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,