Continuity results for parametric nonlinear singular Dirichlet problems

被引:12
|
作者
Bai, Yunru [1 ]
Motreanu, Dumitru [2 ]
Zeng, Shengda [1 ]
机构
[1] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Univ Perpignan, Dept Math, F-66860 Perpignan, France
基金
欧盟地平线“2020”;
关键词
Parametric singular elliptic equation; p-Laplacian; smallest solution; sequential continuity; monotonicity; MULTIPLE CONSTANT SIGN; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; NODAL SOLUTIONS; BIFURCATION; CONVECTION; EXISTENCE;
D O I
10.1515/anona-2020-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study from a qualitative point of view the nonlinear singular Dirichlet problem depending on a parameter lambda > 0 that was considered in [32]. Denoting by S-lambda the set of positive solutions of the problem corresponding to the parameter lambda, we establish the following essential properties of S lambda: (i) there exists a smallest element u(lambda)* in S-lambda, and the mapping lambda -> u(lambda)* is (strictly) increasing and left continuous; (ii) the set-valued mapping lambda -> S-lambda is sequentially continuous.
引用
收藏
页码:372 / 387
页数:16
相关论文
共 50 条
  • [31] Regularity results for a class of nonlinear fractional Laplacian and singular problems
    Arora, Rakesh
    Giacomoni, Jacques
    Warnault, Guillaume
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (03):
  • [32] Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [33] HOLDER CONTINUITY RESULTS FOR PARAMETRIC SET OPTIMIZATION PROBLEMS VIA IMPROVEMENT SETS
    Xu, Yingrang
    Li, Shengjie
    PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (02): : 459 - 468
  • [34] Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems
    S. Leonardi
    Nikolaos S. Papageorgiou
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [35] On a singular nonlinear Dirichlet problem with a convection term
    Zhang, ZJ
    Yu, JN
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (04) : 916 - 927
  • [36] NONLINEAR DIRICHLET PROBLEMS IN ANNULI
    BANDLE, C
    PELETIER, LA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (05): : 181 - 184
  • [37] Multiple solutions for a nonlinear singular dirichlet problem
    Duc, DM
    Le Luc, N
    Nam, LQ
    Tuyen, TT
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ABSTRACT AND APPLIED ANALYSIS, 2004, : 51 - 63
  • [38] ON A SINGULAR NONLINEAR DIRICHLET PROBLEM .2.
    COCLITE, MM
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1991, 5B (04): : 955 - 975
  • [39] ON A SINGULAR NONLINEAR DIRICHLET PROBLEM .3.
    COCLITE, MM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (07) : 547 - 564
  • [40] ON A SINGULAR NONLINEAR DIRICHLET PROBLEM .4.
    COCLITE, MM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (07) : 925 - 936