Continuity results for parametric nonlinear singular Dirichlet problems

被引:12
|
作者
Bai, Yunru [1 ]
Motreanu, Dumitru [2 ]
Zeng, Shengda [1 ]
机构
[1] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Univ Perpignan, Dept Math, F-66860 Perpignan, France
基金
欧盟地平线“2020”;
关键词
Parametric singular elliptic equation; p-Laplacian; smallest solution; sequential continuity; monotonicity; MULTIPLE CONSTANT SIGN; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; NODAL SOLUTIONS; BIFURCATION; CONVECTION; EXISTENCE;
D O I
10.1515/anona-2020-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study from a qualitative point of view the nonlinear singular Dirichlet problem depending on a parameter lambda > 0 that was considered in [32]. Denoting by S-lambda the set of positive solutions of the problem corresponding to the parameter lambda, we establish the following essential properties of S lambda: (i) there exists a smallest element u(lambda)* in S-lambda, and the mapping lambda -> u(lambda)* is (strictly) increasing and left continuous; (ii) the set-valued mapping lambda -> S-lambda is sequentially continuous.
引用
收藏
页码:372 / 387
页数:16
相关论文
共 50 条