共 50 条
EXACT BOUNDARY BEHAVIOR OF SOLUTIONS TO SINGULAR NONLINEAR DIRICHLET PROBLEMS
被引:0
|作者:
Li, Bo
[1
]
Zhang, Zhijun
[2
]
机构:
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
关键词:
Semilinear elliptic equation;
singular Dirichlet problem;
positive solution;
boundary behavior;
POSITIVE SOLUTIONS;
ASYMPTOTIC-BEHAVIOR;
ELLIPTIC-EQUATIONS;
UNIQUE SOLUTION;
EXISTENCE;
GRADIENT;
MULTIPLICITY;
NONEXISTENCE;
BIFURCATION;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this article we analyze the exact boundary behavior of solutions to the singular nonlinear Dirichlet problem -Delta u = b(x)g(u) + lambda a(x) f (u), u > 0, x is an element of Omega, u vertical bar(partial derivative Omega)= 0, where Omega is a bounded domain with smooth boundary in R-N, lambda > 0, g is an element of C-1((0, infinity), (0, infinity)), g(s) = infinity, b, a is an element of C-loc(alpha)(Omega), are positive, but may vanish or be singular on the boundary, and f is an element of C([0, infinity), [0, infinity)).
引用
收藏
页数:12
相关论文