EXACT BOUNDARY BEHAVIOR OF SOLUTIONS TO SINGULAR NONLINEAR DIRICHLET PROBLEMS

被引:0
|
作者
Li, Bo [1 ]
Zhang, Zhijun [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
关键词
Semilinear elliptic equation; singular Dirichlet problem; positive solution; boundary behavior; POSITIVE SOLUTIONS; ASYMPTOTIC-BEHAVIOR; ELLIPTIC-EQUATIONS; UNIQUE SOLUTION; EXISTENCE; GRADIENT; MULTIPLICITY; NONEXISTENCE; BIFURCATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we analyze the exact boundary behavior of solutions to the singular nonlinear Dirichlet problem -Delta u = b(x)g(u) + lambda a(x) f (u), u > 0, x is an element of Omega, u vertical bar(partial derivative Omega)= 0, where Omega is a bounded domain with smooth boundary in R-N, lambda > 0, g is an element of C-1((0, infinity), (0, infinity)), g(s) = infinity, b, a is an element of C-loc(alpha)(Omega), are positive, but may vanish or be singular on the boundary, and f is an element of C([0, infinity), [0, infinity)).
引用
收藏
页数:12
相关论文
共 50 条