Instrumental quantile regression inference for structural and treatment effect models

被引:312
|
作者
Chernozhukov, Victor [1 ]
Hansen, Christian [1 ]
机构
[1] MIT, Dept Econ, Cambridge, MA 02142 USA
关键词
instrumental quantile regression; structural estimation; treatment effects; endogeneity; stochastic dominance; Hausman test; supply-demand equations with random elasticity; returns to education;
D O I
10.1016/j.jeconom.2005.02.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
We introduce a class of instrumental quantile regression methods for heterogeneous treatment effect models and simultaneous equations models with nonadditive errors,and offer computable methods for estimation and inference. These methods can be used to evaluate the impact of endogenous variables or treatments on the entire distribution of outcomes. We describe an estimator of the instrumental variable quantile regression process and the set of inference procedures derived from it. We focus our discussion of inference on tests of distributional equality, constancy of effects, conditional dominance, and exogeneity. We apply the procedures to characterize the returns to schooling in the U.S. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:491 / 525
页数:35
相关论文
共 50 条
  • [41] Variational Inference for Nonparametric Bayesian Quantile Regression
    Abeywardana, Sachinthaka
    Ramos, Fabio
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1686 - 1692
  • [42] Bootstrap Inference for Panel Data Quantile Regression
    Galvao, Antonio F.
    Parker, Thomas
    Xiao, Zhijie
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 628 - 639
  • [43] Causal inference by quantile regression kink designs
    Chiang, Harold D.
    Sasaki, Yuya
    JOURNAL OF ECONOMETRICS, 2019, 210 (02) : 405 - 433
  • [44] A Bayesian Nonparametric Approach to Inference for Quantile Regression
    Taddy, Matthew A.
    Kottas, Athanasios
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (03) : 357 - 369
  • [45] Partial identification and inference in censored quantile regression
    Fan, Yanqin
    Liu, Ruixuan
    JOURNAL OF ECONOMETRICS, 2018, 206 (01) : 1 - 38
  • [46] Inference on linear quantile regression with dyadic data
    Chen, Hongqi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2025, 239
  • [47] Nonparametric inference on smoothed quantile regression process
    Hao, Meiling
    Lin, Yuanyuan
    Shen, Guohao
    Su, Wen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [48] k-Class instrumental variables quantile regression
    Kaplan, David M.
    Liu, Xin
    EMPIRICAL ECONOMICS, 2024, 67 (01) : 111 - 141
  • [49] A new robust inference for predictive quantile regression
    Cai, Zongwu
    Chen, Haiqiang
    Liao, Xiaosai
    JOURNAL OF ECONOMETRICS, 2023, 234 (01) : 227 - 250
  • [50] Asymptotic inference for the constrained quantile regression process
    Parker, Thomas
    JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 174 - 189