Asymptotic inference for the constrained quantile regression process

被引:4
|
作者
Parker, Thomas [1 ]
机构
[1] Univ Waterloo, Dept Econ, Waterloo, ON, Canada
关键词
Quantile regression; Inequality constraints; Asymptotic inference; PARAMETER; TESTS;
D O I
10.1016/j.jeconom.2019.04.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
I investigate the asymptotic distribution of linear quantile regression coefficient estimates when the parameter lies on the boundary of the parameter space. In order to allow for inferences made across many conditional quantiles, I provide a uniform characterization of constrained quantile regression estimates as a stochastic process over an interval of quantile levels. To do this I pose the process of estimates as solutions to a parameterized family of constrained optimization problems, parameterized by quantile level. A uniform characterization of the dual solution to these problems - the so-called regression rankscore process - is also derived, which can be used for score-type inference in quantile regression. The asymptotic behavior of quasi-likelihood ratio, Wald and regression rankscore processes for inference when the null hypothesis asserts that the parameters lie on a boundary follows from the features of the constrained solutions. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:174 / 189
页数:16
相关论文
共 50 条
  • [1] Inference on the quantile regression process
    Koenker, R
    Xiao, ZJ
    ECONOMETRICA, 2002, 70 (04) : 1583 - 1612
  • [2] Nonparametric inference on smoothed quantile regression process
    Hao, Meiling
    Lin, Yuanyuan
    Shen, Guohao
    Su, Wen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [3] SCALABLE ESTIMATION AND INFERENCE FOR CENSORED QUANTILE REGRESSION PROCESS
    He, Xuming
    Pan, Xiaoou
    Tan, Kean Ming
    Zhou, Wen-Xin
    ANNALS OF STATISTICS, 2022, 50 (05): : 2899 - 2924
  • [4] ASYMPTOTIC INFERENCE FOR HIDDEN PROCESS REGRESSION MODELS
    Nguyen, Hien D.
    McLachlan, Geoffrey J.
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 256 - 259
  • [5] Constrained quantile regression and heteroskedasticity
    Amerise, Ilaria Lucrezia
    JOURNAL OF NONPARAMETRIC STATISTICS, 2022, 34 (02) : 344 - 356
  • [6] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [7] A Unified Inference for Predictive Quantile Regression
    Liu, Xiaohui
    Long, Wei
    Peng, Liang
    Yang, Bingduo
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1526 - 1540
  • [8] Quantile inference for heteroscedastic regression models
    Chan, Ngai Hang
    Zhang, Rong-Mao
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2079 - 2090
  • [9] Robust Inference for Censored Quantile Regression
    Tang, Yuanyuan
    Wang, Xiaorui
    Zhu, Jianming
    Lin, Hongmei
    Tang, Yanlin
    Tong, Tiejun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [10] DISTRIBUTED INFERENCE FOR QUANTILE REGRESSION PROCESSES
    Volgushev, Stanislav
    Chao, Shih-Kang
    Cheng, Guang
    ANNALS OF STATISTICS, 2019, 47 (03): : 1634 - 1662