Instrumental quantile regression inference for structural and treatment effect models

被引:312
|
作者
Chernozhukov, Victor [1 ]
Hansen, Christian [1 ]
机构
[1] MIT, Dept Econ, Cambridge, MA 02142 USA
关键词
instrumental quantile regression; structural estimation; treatment effects; endogeneity; stochastic dominance; Hausman test; supply-demand equations with random elasticity; returns to education;
D O I
10.1016/j.jeconom.2005.02.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
We introduce a class of instrumental quantile regression methods for heterogeneous treatment effect models and simultaneous equations models with nonadditive errors,and offer computable methods for estimation and inference. These methods can be used to evaluate the impact of endogenous variables or treatments on the entire distribution of outcomes. We describe an estimator of the instrumental variable quantile regression process and the set of inference procedures derived from it. We focus our discussion of inference on tests of distributional equality, constancy of effects, conditional dominance, and exogeneity. We apply the procedures to characterize the returns to schooling in the U.S. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:491 / 525
页数:35
相关论文
共 50 条
  • [31] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [32] A Unified Inference for Predictive Quantile Regression
    Liu, Xiaohui
    Long, Wei
    Peng, Liang
    Yang, Bingduo
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1526 - 1540
  • [33] Robust Inference for Censored Quantile Regression
    Tang, Yuanyuan
    Wang, Xiaorui
    Zhu, Jianming
    Lin, Hongmei
    Tang, Yanlin
    Tong, Tiejun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [34] DISTRIBUTED INFERENCE FOR QUANTILE REGRESSION PROCESSES
    Volgushev, Stanislav
    Chao, Shih-Kang
    Cheng, Guang
    ANNALS OF STATISTICS, 2019, 47 (03): : 1634 - 1662
  • [35] NONSTANDARD QUANTILE-REGRESSION INFERENCE
    Goh, S. C.
    Knight, K.
    ECONOMETRIC THEORY, 2009, 25 (05) : 1415 - 1432
  • [36] Averaging Estimation for Instrumental Variables Quantile Regression
    Liu, Xin
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2024, 86 (05) : 1290 - 1312
  • [37] SPECIFICATION TESTING IN NONPARAMETRIC INSTRUMENTAL QUANTILE REGRESSION
    Breunig, Christoph
    ECONOMETRIC THEORY, 2020, 36 (04) : 583 - 625
  • [38] Debiased inference on heterogeneous quantile treatment effects with regression rank scores
    Giessing, Alexander
    Wang, Jingshen
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 85 (05) : 1561 - 1588
  • [39] Robust uniform inference for quantile treatment effects in regression discontinuity designs
    Chiang, Harold D.
    Hsu, Yu-Chin
    Sasaki, Yuya
    JOURNAL OF ECONOMETRICS, 2019, 211 (02) : 589 - 618
  • [40] Inference for joint quantile and expected shortfall regression
    Peng, Xiang
    Wang, Huixia Judy
    STAT, 2023, 12 (01):