An eigensystem approach to Anderson localization

被引:13
|
作者
Elgart, Alexander [1 ]
Klein, Abel [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Random Schrodinger operators; Anderson localization; Anderson model; Multiscale analysis; Level spacing; Hall's Marriage Theorem; MANY-BODY LOCALIZATION; LARGE DISORDER; SPECTRUM; PROOF; DIFFUSION; CRITERIA; ABSENCE; SYSTEM; MODEL;
D O I
10.1016/j.jfa.2016.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new approach for proving localization (pure point spectrum with exponentially decaying eigenfunctions, dynamical localization) for the Anderson model at high disorder. In contrast to the usual strategy, we do not study finite volume Green's functions. Instead, we perform a multiscale analysis based on finite volume eigensystems (eigenvalues and eigenfunctions). Information about eigensystems at a given scale is used to derive information about eigensystems at larger scales. This eigensystem multiscale analysis treats all energies of the finite volume operator at the same time, establishing level spacing and localization of eigenfunctions in a fixed box with high probability. A new feature is the labeling of the eigenvalues and eigenfunctions by the sites of the box. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:3465 / 3512
页数:48
相关论文
共 50 条
  • [41] ANDERSON LOCALIZATION AND SUPERSYMMETRY
    Efetov, K. B.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (12-13): : 1756 - 1788
  • [42] ANDERSON LOCALIZATION AND SUPERCONDUCTIVITY
    BULAEVSKII, LN
    SADOVSKII, MV
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1985, 59 (1-2) : 89 - 113
  • [43] Anderson localization for photons
    Yurii, N.
    PHYSICS-USPEKHI, 2013, 56 (02) : 211 - 211
  • [44] Synchrophasor Estimation Through An Eigensystem Realization Approach
    Zelaya A, F. A.
    Zamora, A.
    Paternina, M. R. A.
    Sarabia, S.
    2018 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2018,
  • [45] Anderson Localization and Polarization
    Kishi, Masato
    Hatsugai, Yasuhiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72
  • [46] MODELS OF ANDERSON LOCALIZATION
    SKINNER, JL
    JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (10): : 2503 - 2507
  • [47] ANDERSON LOCALIZATION - PREFACE
    NAGAOKA, Y
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1985, (84): : R1 - R1
  • [48] Solitonization of the Anderson localization
    Conti, Claudio
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [49] Anderson localization of light
    Segev M.
    Silberberg Y.
    Christodoulides D.N.
    Nature Photonics, 2013, 7 (3) : 197 - 204
  • [50] Anomalous Anderson localization
    Deng, WJ
    PHYSICA B, 2000, 279 (1-3): : 224 - 226