An eigensystem approach to Anderson localization

被引:13
|
作者
Elgart, Alexander [1 ]
Klein, Abel [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Random Schrodinger operators; Anderson localization; Anderson model; Multiscale analysis; Level spacing; Hall's Marriage Theorem; MANY-BODY LOCALIZATION; LARGE DISORDER; SPECTRUM; PROOF; DIFFUSION; CRITERIA; ABSENCE; SYSTEM; MODEL;
D O I
10.1016/j.jfa.2016.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new approach for proving localization (pure point spectrum with exponentially decaying eigenfunctions, dynamical localization) for the Anderson model at high disorder. In contrast to the usual strategy, we do not study finite volume Green's functions. Instead, we perform a multiscale analysis based on finite volume eigensystems (eigenvalues and eigenfunctions). Information about eigensystems at a given scale is used to derive information about eigensystems at larger scales. This eigensystem multiscale analysis treats all energies of the finite volume operator at the same time, establishing level spacing and localization of eigenfunctions in a fixed box with high probability. A new feature is the labeling of the eigenvalues and eigenfunctions by the sites of the box. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:3465 / 3512
页数:48
相关论文
共 50 条
  • [11] FINITE SIZE SCALING APPROACH TO ANDERSON LOCALIZATION
    PICHARD, JL
    SARMA, G
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (06): : L127 - L132
  • [12] Resonant enhancement of Anderson localization: Analytical approach
    Herrera-Gonzalez, I. F.
    Izrailev, F. M.
    Makarov, N. M.
    PHYSICAL REVIEW E, 2013, 88 (05):
  • [13] Eigensystem Multiscale Analysis for the Anderson Model via the Wegner Estimate
    Alexander Elgart
    Abel Klein
    Annales Henri Poincaré, 2020, 21 : 2301 - 2326
  • [14] Eigensystem Multiscale Analysis for the Anderson Model via the Wegner Estimate
    Elgart, Alexander
    Klein, Abel
    ANNALES HENRI POINCARE, 2020, 21 (07): : 2301 - 2326
  • [15] SELF-CONSISTENT APPROACH TO LOCALIZATION AND THE ANDERSON TRANSITION
    THOMPSON, CJ
    MATSUBARA, T
    PROGRESS OF THEORETICAL PHYSICS, 1991, 86 (06): : 1191 - 1210
  • [17] RENORMALIZATION-GROUP THEORETIC APPROACH TO ANDERSON LOCALIZATION
    KUMAR, N
    CURRENT SCIENCE, 1978, 47 (05): : 143 - 144
  • [18] Strong-disorder approach for the Anderson localization transition
    Mard, H. Javan
    Hoyos, Jose A.
    Miranda, E.
    Dobrosavljevic, V.
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [19] NUMERICAL-RENORMALIZATION-GROUP APPROACH TO ANDERSON LOCALIZATION
    BELL, PM
    MACKINNON, A
    PHYSICAL REVIEW B, 1995, 51 (15): : 9544 - 9551
  • [20] DIAGRAMMATIC APPROACH TO ANDERSON LOCALIZATION IN THE QUANTUM KICKED ROTATOR
    ALTLAND, A
    PHYSICAL REVIEW LETTERS, 1993, 71 (01) : 69 - 72