An eigensystem approach to Anderson localization

被引:13
|
作者
Elgart, Alexander [1 ]
Klein, Abel [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Random Schrodinger operators; Anderson localization; Anderson model; Multiscale analysis; Level spacing; Hall's Marriage Theorem; MANY-BODY LOCALIZATION; LARGE DISORDER; SPECTRUM; PROOF; DIFFUSION; CRITERIA; ABSENCE; SYSTEM; MODEL;
D O I
10.1016/j.jfa.2016.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new approach for proving localization (pure point spectrum with exponentially decaying eigenfunctions, dynamical localization) for the Anderson model at high disorder. In contrast to the usual strategy, we do not study finite volume Green's functions. Instead, we perform a multiscale analysis based on finite volume eigensystems (eigenvalues and eigenfunctions). Information about eigensystems at a given scale is used to derive information about eigensystems at larger scales. This eigensystem multiscale analysis treats all energies of the finite volume operator at the same time, establishing level spacing and localization of eigenfunctions in a fixed box with high probability. A new feature is the labeling of the eigenvalues and eigenfunctions by the sites of the box. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:3465 / 3512
页数:48
相关论文
共 50 条
  • [21] Numerical-renormalization-group approach to Anderson localization
    Bell, P. M.
    MacKinnon, A.
    Physical Review B: Condensed Matter, 51 (15):
  • [22] Anderson localization
    Woelfle, P.
    NANO OPTICS AND ATOMICS: TRANSPORT OF LIGHT AND MATTER WAVES, 2011, 173 : 1 - 24
  • [23] Anderson Localization
    Slevin, Keith
    Ohtsuki, Tomi
    Conductor-Insulator Quantum Phase Transitions, 2012, 9780199592593
  • [24] RENORMALIZATION-GROUP APPROACH TO QUANTUM PERCOLATION AND ANDERSON LOCALIZATION
    ROOT, L
    SKINNER, JL
    PHYSICAL REVIEW B, 1986, 33 (11): : 7738 - 7742
  • [25] ANDERSON LOCALIZATION PROBLEM .1. NEW NUMERICAL APPROACH
    WEAIRE, D
    WILLIAMS, AR
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (08): : 1239 - 1245
  • [26] SCALING THEORY OF ANDERSON LOCALIZATION - A RENORMALIZATION-GROUP APPROACH
    SARKER, S
    DOMANY, E
    PHYSICAL REVIEW B, 1981, 23 (11): : 6018 - 6036
  • [27] A RIGOROUS REPLICA TRICK APPROACH TO ANDERSON LOCALIZATION IN ONE DIMENSION
    KLEIN, A
    MARTINELLI, F
    PEREZ, JF
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (04) : 623 - 633
  • [28] Synchrophasor Estimation Through An Eigensystem Realization Approach
    Zelaya A, F. A.
    Zamora, A.
    Paternina, M. R. A.
    2018 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2018,
  • [29] Solitonization of the Anderson localization
    Conti, Claudio
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [30] Anderson Localization of Solitons
    Sacha, Krzysztof
    Mueller, Cord A.
    Delande, Dominique
    Zakrzewski, Jakub
    PHYSICAL REVIEW LETTERS, 2009, 103 (21)