An eigensystem approach to Anderson localization

被引:13
|
作者
Elgart, Alexander [1 ]
Klein, Abel [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Random Schrodinger operators; Anderson localization; Anderson model; Multiscale analysis; Level spacing; Hall's Marriage Theorem; MANY-BODY LOCALIZATION; LARGE DISORDER; SPECTRUM; PROOF; DIFFUSION; CRITERIA; ABSENCE; SYSTEM; MODEL;
D O I
10.1016/j.jfa.2016.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new approach for proving localization (pure point spectrum with exponentially decaying eigenfunctions, dynamical localization) for the Anderson model at high disorder. In contrast to the usual strategy, we do not study finite volume Green's functions. Instead, we perform a multiscale analysis based on finite volume eigensystems (eigenvalues and eigenfunctions). Information about eigensystems at a given scale is used to derive information about eigensystems at larger scales. This eigensystem multiscale analysis treats all energies of the finite volume operator at the same time, establishing level spacing and localization of eigenfunctions in a fixed box with high probability. A new feature is the labeling of the eigenvalues and eigenfunctions by the sites of the box. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:3465 / 3512
页数:48
相关论文
共 50 条
  • [1] An Eigensystem Approach to Anderson Localization for Multi-particle Systems
    Bringmann, Bjoern
    Mendelson, Dana
    ANNALES HENRI POINCARE, 2021, 22 (10): : 3255 - 3290
  • [2] An Eigensystem Approach to Anderson Localization for Multi-particle Systems
    Bjoern Bringmann
    Dana Mendelson
    Annales Henri Poincaré, 2021, 22 : 3255 - 3290
  • [3] Eigensystem multiscale analysis for Anderson localization in energy intervals
    Elgart, Alexander
    Klein, Abel
    JOURNAL OF SPECTRAL THEORY, 2019, 9 (02) : 711 - 765
  • [4] Eigensystem bootstrap multiscale analysis for the Anderson model
    Klein, Abel
    Shing, Chi
    Tsang, Sidney
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (03) : 1149 - 1197
  • [5] A RIGOROUS APPROACH TO ANDERSON LOCALIZATION
    FROHLICH, J
    SPENCER, T
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 103 (1-4): : 9 - 25
  • [6] Scattering Approach to Anderson Localization
    Ossipov, A.
    PHYSICAL REVIEW LETTERS, 2018, 121 (07)
  • [7] FINITE SIZE SCALING APPROACH TO ANDERSON LOCALIZATION
    PICHARD, JL
    SARMA, G
    JOURNAL DE PHYSIQUE, 1981, 42 (NC4): : 37 - 45
  • [8] NEW NUMERICAL APPROACH TO ANDERSON LOCALIZATION PROBLEM
    WEAIRE, D
    WILLIAMS, AR
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1976, 9 (17): : L461 - L463
  • [9] On the time-dependent approach to Anderson localization
    Hundertmark, D
    MATHEMATISCHE NACHRICHTEN, 2000, 214 : 25 - 38
  • [10] A MEAN-FIELD APPROACH TO ANDERSON LOCALIZATION
    SORNETTE, D
    SOUILLARD, B
    EUROPHYSICS LETTERS, 1990, 13 (01): : 7 - 12