Prediction of hepatitis E using machine learning models

被引:25
|
作者
Guo, Yanhui [1 ]
Feng, Yi [2 ,3 ]
Qu, Fuli [1 ]
Zhang, Li [2 ,3 ]
Yan, Bingyu [2 ,3 ]
Lv, Jingjing [2 ,3 ]
机构
[1] Shandong Womens Univ, Sch Data & Comp Sci, Jinan, Shandong, Peoples R China
[2] Shandong Ctr Dis Control & Prevent, Shandong Prov Key Lab Infect Dis Control & Preven, Jinan, Shandong, Peoples R China
[3] Shandong Univ, Acad Prevent Med, Jinan, Shandong, Peoples R China
来源
PLOS ONE | 2020年 / 15卷 / 09期
关键词
D O I
10.1371/journal.pone.0237750
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Accurate and reliable predictions of infectious disease can be valuable to public health organizations that plan interventions to decrease or prevent disease transmission. A great variety of models have been developed for this task. However, for different data series, the performance of these models varies. Hepatitis E, as an acute liver disease, has been a major public health problem. Which model is more appropriate for predicting the incidence of hepatitis E? In this paper, three different methods are used and the performance of the three methods is compared. Methods Autoregressive integrated moving average(ARIMA), support vector machine(SVM) and long short-term memory(LSTM) recurrent neural network were adopted and compared. ARIMA was implemented by python with the help of statsmodels. SVM was accomplished by matlab with libSVM library. LSTM was designed by ourselves with Keras, a deep learning library. To tackle the problem of overfitting caused by limited training samples, we adopted dropout and regularization strategies in our LSTM model. Experimental data were obtained from the monthly incidence and cases number of hepatitis E from January 2005 to December 2017 in Shandong province, China. We selected data from July 2015 to December 2017 to validate the models, and the rest was taken as training set. Three metrics were applied to compare the performance of models, including root mean square error(RMSE), mean absolute percentage error(MAPE) and mean absolute error(MAE). Results By analyzing data, we tookARIMA(1, 1, 1),ARIMA(3, 1, 2) as monthly incidence prediction model and cases number prediction model, respectively. Cross-validation and grid search were used to optimize parameters of SVM. Penalty coefficientCand kernel function parametergwere set 8, 0.125 for incidence prediction, and 22, 0.01 for cases number prediction. LSTM has 4 nodes. Dropout and L2 regularization parameters were set 0.15, 0.001, respectively. By the metrics of RMSE, we obtained 0.022, 0.0204, 0.01 for incidence prediction, using ARIMA, SVM and LSTM. And we obtained 22.25, 20.0368, 11.75 for cases number prediction, using three models. For MAPE metrics, the results were 23.5%, 21.7%, 15.08%, and 23.6%, 21.44%, 13.6%, for incidence prediction and cases number prediction, respectively. For MAE metrics, the results were 0.018, 0.0167, 0.011 and 18.003, 16.5815, 9.984, for incidence prediction and cases number prediction, respectively. Conclusions Comparing ARIMA, SVM and LSTM, we found that nonlinear models(SVM, LSTM) outperform linear models(ARIMA). LSTM obtained the best performance in all three metrics of RSME, MAPE, MAE. Hence, LSTM is the most suitable for predicting hepatitis E monthly incidence and cases number.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Deep learning models for hepatitis E incidence prediction leveraging meteorological factors
    Feng, Yi
    Cui, Xiya
    Lv, Jingjing
    Yan, Bingyu
    Meng, Xin
    Zhang, Li
    Guo, Yanhui
    PLOS ONE, 2023, 18 (03):
  • [32] Deep learning models for hepatitis E incidence prediction leveraging Baidu index
    Guo, Yanhui
    Zhang, Li
    Pang, Shengnan
    Cui, Xiya
    Zhao, Xuechen
    Feng, Yi
    BMC PUBLIC HEALTH, 2024, 24 (01)
  • [33] Using Active Learning to Develop Machine Learning Models for Reaction Yield Prediction
    Viet Johansson, Simon
    Gummesson Svensson, Hampus
    Bjerrum, Esben
    Schliep, Alexander
    Haghir Chehreghani, Morteza
    Tyrchan, Christian
    Engkvist, Ola
    MOLECULAR INFORMATICS, 2022, 41 (12)
  • [34] Machine learning models and bankruptcy prediction
    Barboza, Flavio
    Kimura, Herbert
    Altman, Edward
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 83 : 405 - 417
  • [35] Sales Prediction in E-Commerce Platforms Using Machine Learning
    Aljbour, Mohammed
    Avci, Isa
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 2, FONES-AIOT 2024, 2024, 1036 : 207 - 216
  • [36] Unboxing machine learning models for concrete strength prediction using XAI
    Elhishi, Sara
    Elashry, Asmaa Mohammed
    El-Metwally, Sara
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] Development of childhood asthma prediction models using machine learning approaches
    Kothalawala, Dilini M.
    Murray, Clare S.
    Simpson, Angela
    Custovic, Adnan
    Tapper, William J.
    Arshad, S. Hasan
    Holloway, John W.
    Rezwan, Faisal, I
    CLINICAL AND TRANSLATIONAL ALLERGY, 2021, 11 (09)
  • [38] Prediction of Graduate Admission using Multiple Supervised Machine Learning Models
    Bitar, Zain
    Al-Mousa, Amjed
    IEEE SOUTHEASTCON 2020, 2020,
  • [39] A new algorithm for time series prediction using machine learning models
    Jahnavi, Yeturu
    Elango, Poongothai
    Raja, S. P.
    Parra Fuente, Javier
    Verdu, Elena
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (05) : 1449 - 1460
  • [40] Prediction of methane emission from landfills using machine learning models
    Mehrdad, Seyed Mostafa
    Abbasi, Maryam
    Yeganeh, Bijan
    Kamalan, Hamidreza
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2021, 40 (04)