MULTIFRACTALITY IN THE GENERALIZED AUBRY-ANDRE QUASIPERIODIC LOCALIZATION MODEL WITH POWER-LAW HOPPINGS OR POWER-LAW FOURIER COEFFICIENTS

被引:9
|
作者
Monthus, Cecile [1 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CNRS UMR 3681, CEA, F-91191 Gif Sur Yvette, France
关键词
Multifractality; Localization; Quasiperiodicity; VIBRATIONAL-MODES; WAVE-FUNCTIONS; ENERGY-LEVELS; FLUCTUATIONS; ELECTRONS; SYSTEMS; CHAOS;
D O I
10.1142/S0218348X19500075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nearest-neighbor Aubry Andre quasiperiodic localization model is generalized to include power-law translation-invariant hoppings T-l proportional to t/l(a) or power-law Fourier coefficients W-m proportional to w/m(b) in the quasiperiodic potential. The Aubry-Andre duality between T-l and W-m manifests when the Hamiltonian is written in the real-space basis and in the Fourier basis on a finite ring. The perturbative analysis in the amplitude t of the hoppings yields that the eigenstates remain power-law localized in real space for a > 1 and are critical for a(c) = 1 where they follow the strong multifractality linear spectrum, as in the equivalent model with random disorder. The perturbative analysis in the amplitude w of the quasiperiodic potential yields that the eigenstates remain delocalized in real space (power-law localized in Fourier space) for b > 1 and are critical for b(c) = 1 where they follow the weak multifractality Gaussian spectrum in real space (or strong multifractality linear spectrum in the Fourier basis). This critical case b(c) = 1 for the Fourier coefficients W-m corresponds to a periodic function with discontinuities, instead of the cosinus function of the standard self-dual Aubry-Andre model.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Model selection for identifying power-law scaling
    Ton, Robert
    Daffertshofer, Andreas
    NEUROIMAGE, 2016, 136 : 215 - 226
  • [42] Nucleosynthesis in power-law cosmologies
    Kaplinghat, M
    Steigman, G
    Walker, TP
    PHYSICAL REVIEW D, 2000, 61 (10):
  • [43] ON GENERATING POWER-LAW NOISE
    TIMMER, J
    KONIG, M
    ASTRONOMY & ASTROPHYSICS, 1995, 300 (03) : 707 - 710
  • [44] Power-law random walks
    Vignat, C.
    Plastino, A.
    PHYSICAL REVIEW E, 2006, 74 (05):
  • [45] A generative power-law search tree model
    Carvalho, Alda
    Crato, Nuno
    Gomes, Carla
    COMPUTERS & OPERATIONS RESEARCH, 2009, 36 (08) : 2376 - 2386
  • [46] ON THE POWER-LAW CREEP EQUATION
    BROWN, AM
    ASHBY, MF
    SCRIPTA METALLURGICA, 1980, 14 (12): : 1297 - 1302
  • [47] SAMPLING POWER-LAW DISTRIBUTIONS
    PICKERING, G
    BULL, JM
    SANDERSON, DJ
    TECTONOPHYSICS, 1995, 248 (1-2) : 1 - 20
  • [48] Power-law stellar distributions
    Lima, JAS
    de Souza, RE
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 350 (2-4) : 303 - 314
  • [49] Power-law solutions for TeVeS
    Magalhaes Batista, C. E.
    Zimdahl, W.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (10)
  • [50] CONTROL OF POWER-LAW FLUIDS
    WHITE, LW
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (03) : 289 - 298