MULTIFRACTALITY IN THE GENERALIZED AUBRY-ANDRE QUASIPERIODIC LOCALIZATION MODEL WITH POWER-LAW HOPPINGS OR POWER-LAW FOURIER COEFFICIENTS

被引:9
|
作者
Monthus, Cecile [1 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CNRS UMR 3681, CEA, F-91191 Gif Sur Yvette, France
关键词
Multifractality; Localization; Quasiperiodicity; VIBRATIONAL-MODES; WAVE-FUNCTIONS; ENERGY-LEVELS; FLUCTUATIONS; ELECTRONS; SYSTEMS; CHAOS;
D O I
10.1142/S0218348X19500075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nearest-neighbor Aubry Andre quasiperiodic localization model is generalized to include power-law translation-invariant hoppings T-l proportional to t/l(a) or power-law Fourier coefficients W-m proportional to w/m(b) in the quasiperiodic potential. The Aubry-Andre duality between T-l and W-m manifests when the Hamiltonian is written in the real-space basis and in the Fourier basis on a finite ring. The perturbative analysis in the amplitude t of the hoppings yields that the eigenstates remain power-law localized in real space for a > 1 and are critical for a(c) = 1 where they follow the strong multifractality linear spectrum, as in the equivalent model with random disorder. The perturbative analysis in the amplitude w of the quasiperiodic potential yields that the eigenstates remain delocalized in real space (power-law localized in Fourier space) for b > 1 and are critical for b(c) = 1 where they follow the weak multifractality Gaussian spectrum in real space (or strong multifractality linear spectrum in the Fourier basis). This critical case b(c) = 1 for the Fourier coefficients W-m corresponds to a periodic function with discontinuities, instead of the cosinus function of the standard self-dual Aubry-Andre model.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Similarity solutions to the power-law generalized Newtonian fluid
    Gao, Wenjie
    Wang, Junyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) : 381 - 391
  • [32] Power-law Schell-model sources
    Hyde, Milo W.
    OPTICS COMMUNICATIONS, 2017, 403 : 312 - 316
  • [33] Nonparametric Power-Law Surrogates
    Moore, Jack Murdoch
    Yan, Gang
    Altmann, Eduardo G.
    PHYSICAL REVIEW X, 2022, 12 (02)
  • [34] TABLES FOR POWER-LAW TRANSFORMATIONS
    HEALY, MJR
    TAYLOR, LR
    BIOMETRIKA, 1962, 49 (3-4) : 557 - &
  • [35] AN EXPANSION FOR POWER-LAW WAVEFUNCTIONS
    JOHNSON, BR
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (11) : 2573 - 2580
  • [36] POWER-LAW SHOT NOISE
    LOWEN, SB
    TEICH, MC
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) : 1302 - 1318
  • [37] Driven power-law oscillator
    Schmelcher, Peter
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [38] A BAG MODEL WITH A POWER-LAW CONFINING POTENTIAL
    BOGOLYUBOV, PN
    DOROKHOV, AE
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1982, 36 (04): : 561 - 564
  • [39] Reduced Order Model for a Power-Law Fluid
    Ocana, M.
    Alonso, D.
    Velazquez, A.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (07):
  • [40] A power-law model for nonlinear phonon hydrodynamics
    Sciacca, Michele
    Jou, David
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):