MULTIFRACTALITY IN THE GENERALIZED AUBRY-ANDRE QUASIPERIODIC LOCALIZATION MODEL WITH POWER-LAW HOPPINGS OR POWER-LAW FOURIER COEFFICIENTS

被引:9
|
作者
Monthus, Cecile [1 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CNRS UMR 3681, CEA, F-91191 Gif Sur Yvette, France
关键词
Multifractality; Localization; Quasiperiodicity; VIBRATIONAL-MODES; WAVE-FUNCTIONS; ENERGY-LEVELS; FLUCTUATIONS; ELECTRONS; SYSTEMS; CHAOS;
D O I
10.1142/S0218348X19500075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nearest-neighbor Aubry Andre quasiperiodic localization model is generalized to include power-law translation-invariant hoppings T-l proportional to t/l(a) or power-law Fourier coefficients W-m proportional to w/m(b) in the quasiperiodic potential. The Aubry-Andre duality between T-l and W-m manifests when the Hamiltonian is written in the real-space basis and in the Fourier basis on a finite ring. The perturbative analysis in the amplitude t of the hoppings yields that the eigenstates remain power-law localized in real space for a > 1 and are critical for a(c) = 1 where they follow the strong multifractality linear spectrum, as in the equivalent model with random disorder. The perturbative analysis in the amplitude w of the quasiperiodic potential yields that the eigenstates remain delocalized in real space (power-law localized in Fourier space) for b > 1 and are critical for b(c) = 1 where they follow the weak multifractality Gaussian spectrum in real space (or strong multifractality linear spectrum in the Fourier basis). This critical case b(c) = 1 for the Fourier coefficients W-m corresponds to a periodic function with discontinuities, instead of the cosinus function of the standard self-dual Aubry-Andre model.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] On the Discretization of the Power-Law Hemolysis Model
    Faghih, Mohammad M.
    Islam, Ahmed
    Sharp, M. Keith
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (01):
  • [22] Power-law to power-law mapping of blazar spectra from intergalactic absorption
    Stecker, F. W.
    Scully, S. T.
    PROCEEDINGS OF THE TEV PARTICLE ASTROPHYSICS II WORKSHOP, 2007, 60 : 315 - +
  • [23] Generalized stiffness and effective mass coefficients for power-law Euler–Bernoulli beams
    Piotr Skrzypacz
    Daulet Nurakhmetov
    Dongming Wei
    Acta Mechanica Sinica, 2020, 36 : 160 - 175
  • [24] Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients
    Biswas, Anjan
    Vega-Guzman, Jose M.
    Yildirim, Yakup
    Moshokoa, Seithuti P.
    Aphane, Maggie
    Alghamdi, Abdulah A.
    UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2023, 24 (03) : 185 - 192
  • [25] Power-law scaling in human EEG: Relation to Fourier power spectrum
    Ferree, Thomas C.
    Hwa, Rudolph C.
    Neurocomputing, 2003, 52-54 : 755 - 761
  • [26] Power-law scaling in human EEG: relation to Fourier power spectrum
    Ferree, TC
    Hwa, RC
    NEUROCOMPUTING, 2003, 52-4 : 755 - 761
  • [27] Modeling of flows with power-law spectral densities and power-law distributions of flow intensities
    Kaulakys, Bronislovas
    Alaburda, Miglius
    Gontis, Vygintas
    Meskauskas, Tadas
    Ruseckas, Julius
    TRAFFIC AND GRANULAR FLOW ' 05, 2007, : 603 - +
  • [28] Magnetohydrodynamic Flow of a Power-Law Fluid over a Stretching Sheet with a Power-Law Velocity
    Bognar, Gabriella
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, ICDDEA 2015, 2016, 164 : 131 - 139
  • [29] STATISTICAL PROPERTIES OF A GENERALIZED CLASS OF POWER-LAW DISTRIBUTIONS
    GRIGOREV, VA
    FADEEV, AG
    BERKOVITS, LA
    INDUSTRIAL LABORATORY, 1988, 54 (05): : 576 - 579
  • [30] Power-law entropies for continuous systems and generalized operations
    Creaco, Anthony J.
    Kalogeropoulos, Nikolaos
    MODERN PHYSICS LETTERS B, 2018, 32 (28):