INVARIANCE ENTROPY OF HYPERBOLIC CONTROL SETS

被引:26
|
作者
Da Silva, Adriano [1 ]
Kawan, Christoph [2 ]
机构
[1] Imecc Unicamp, Dept Matemat, BR-13083859 Campinas, SP, Brazil
[2] Univ Passau, Fak Informat & Math, D-94032 Passau, Germany
基金
巴西圣保罗研究基金会;
关键词
Chain control sets; Control sets; Control-affine systems; Hyperbolicity; Invariance entropy; Shadowing lemma; Universally regular controls; Volume lemma;
D O I
10.3934/dcds.2016.36.97
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we improve the known estimates for the invariance entropy of a nonlinear control system. For sets of complete approximate controllability we derive an upper bound in terms of Lyapunov exponents and for uniformly hyperbolic sets we obtain a similar lower bound. Both estimates can be applied to hyperbolic chain control sets, and we prove that under mild assumptions they can be merged into a formula. The proof of our result reveals the interesting qualitative statement that there exists no control strategy to make a uniformly hyperbolic chain control set invariant that cannot be beaten or at least approached (in the sense of lowering the necessary data rate) by the strategy to stabilize the system at a periodic orbit in the interior of this set.
引用
收藏
页码:97 / 136
页数:40
相关论文
共 50 条
  • [41] NEIGHBORHOODS OF HYPERBOLIC SETS
    HIRSCH, M
    PALIS, J
    PUGH, C
    SHUB, M
    INVENTIONES MATHEMATICAE, 1970, 9 (02) : 121 - &
  • [42] HYPERBOLIC LIMIT SETS
    NEWHOUSE, SE
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 167 (MAY) : 125 - &
  • [43] On certain hyperbolic sets
    Anosov, D. V.
    MATHEMATICAL NOTES, 2010, 87 (5-6) : 608 - 622
  • [44] On certain hyperbolic sets
    D. V. Anosov
    Mathematical Notes, 2010, 87 : 608 - 622
  • [45] A note on topological feedback entropy and invariance entropy
    Colonius, Fritz
    Kawan, Christoph
    Nair, Girish
    SYSTEMS & CONTROL LETTERS, 2013, 62 (05) : 377 - 381
  • [46] Invariance Principles on Signal Sets
    Lee, Ti-Chung
    UKSIM-AMSS 15TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM 2013), 2013, : 224 - 229
  • [47] DECOMPOSABLE SETS AND WEAK INVARIANCE
    STERN, RJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (01) : 20 - 29
  • [48] Modular invariance and entanglement entropy
    Sagar Fakirchand Lokhande
    Sunil Mukhi
    Journal of High Energy Physics, 2015
  • [49] Modular invariance and entanglement entropy
    Lokhande, Sagar Fakirchand
    Mukhi, Sunil
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06):
  • [50] Measurement Invariance, Entropy, and Probability
    Frank, Steven A.
    Smith, D. Eric
    ENTROPY, 2010, 12 (03): : 289 - 303