INVARIANCE ENTROPY OF HYPERBOLIC CONTROL SETS

被引:26
|
作者
Da Silva, Adriano [1 ]
Kawan, Christoph [2 ]
机构
[1] Imecc Unicamp, Dept Matemat, BR-13083859 Campinas, SP, Brazil
[2] Univ Passau, Fak Informat & Math, D-94032 Passau, Germany
基金
巴西圣保罗研究基金会;
关键词
Chain control sets; Control sets; Control-affine systems; Hyperbolicity; Invariance entropy; Shadowing lemma; Universally regular controls; Volume lemma;
D O I
10.3934/dcds.2016.36.97
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we improve the known estimates for the invariance entropy of a nonlinear control system. For sets of complete approximate controllability we derive an upper bound in terms of Lyapunov exponents and for uniformly hyperbolic sets we obtain a similar lower bound. Both estimates can be applied to hyperbolic chain control sets, and we prove that under mild assumptions they can be merged into a formula. The proof of our result reveals the interesting qualitative statement that there exists no control strategy to make a uniformly hyperbolic chain control set invariant that cannot be beaten or at least approached (in the sense of lowering the necessary data rate) by the strategy to stabilize the system at a periodic orbit in the interior of this set.
引用
收藏
页码:97 / 136
页数:40
相关论文
共 50 条
  • [31] ASYMPTOTIC INVARIANCE AND LIMIT SETS OF GENERAL CONTROL-SYSTEMS
    KLOEDEN, PE
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 19 (01) : 91 - 105
  • [32] HYPERBOLIC LINEAR INVARIANCE AND HYPERBOLIC K-CONVEXITY
    MA, WC
    MINDA, D
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1995, 58 : 73 - 93
  • [33] Introduction to Invariance Entropy
    Colonius, Fritz
    INVARIANCE ENTROPY FOR DETERMINISTIC CONTROL SYSTEMS: AN INTRODUCTION, 2013, 2089 : 43 - 87
  • [34] Topological entropy and Hausdorff dimension of irregular sets for non-hyperbolic dynamical systems
    Barrientos, Pablo G.
    Nakano, Yushi
    Raibekas, Artem
    Roldan, Mario
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2022, 37 (02): : 181 - 210
  • [35] Invariance entropy for outputs
    Colonius, Fritz
    Kawan, Christoph
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2011, 22 (03) : 203 - 227
  • [36] Invariance entropy for outputs
    Fritz Colonius
    Christoph Kawan
    Mathematics of Control, Signals, and Systems, 2011, 22 : 203 - 227
  • [37] Entropy sets, weakly mixing sets and entropy capacity
    Blanchard, Francois
    Huang, Wen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 20 (02) : 275 - 311
  • [38] HYPERBOLIC SETS AND ASYMPTOTES
    GOOSSENS, P
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 116 (02) : 604 - 618
  • [39] Measure-theoretic invariance entropy and variational principles for control systems
    Nie, Xiaoxiao
    Wang, Tao
    Huang, Yu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 321 : 318 - 348
  • [40] Compositional Quantification of Invariance Feedback Entropy for Networks of Uncertain Control Systems
    Tomar, Mahendra Singh
    Zamani, Majid
    IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (04): : 827 - 832