DECOMPOSABLE SETS AND WEAK INVARIANCE

被引:0
|
作者
STERN, RJ
机构
关键词
D O I
10.1016/0022-247X(82)90249-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:20 / 29
页数:10
相关论文
共 50 条
  • [1] Order Invariance on Decomposable Structures
    Elberfeld, Michael
    Frickenschmidt, Marlin
    Grohe, Martin
    PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 397 - 406
  • [2] An estimate of the weak invariance defect of sets with piecewise smooth boundary
    V. N. Ushakov
    A. N. Kotel’nikova
    A. G. Malev
    Proceedings of the Steklov Institute of Mathematics, 2014, 287 : 185 - 201
  • [3] An Estimate of the Weak Invariance Defect of Sets with Piecewise Smooth Boundary
    Ushakov, V. N.
    Kotel'nikova, A. N.
    Malev, A. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 : S185 - S201
  • [4] The decomposable and the ambiguous sets
    Karlova, O.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2011, 3 (02) : 71 - 76
  • [5] The Weak Sequential Closure of Decomposable Sets in Lebesgue Spaces and its Application to Variational Geometry
    Mehlitz, Patrick
    Wachsmuth, Gerd
    SET-VALUED AND VARIATIONAL ANALYSIS, 2019, 27 (01) : 265 - 294
  • [6] The Weak Sequential Closure of Decomposable Sets in Lebesgue Spaces and its Application to Variational Geometry
    Patrick Mehlitz
    Gerd Wachsmuth
    Set-Valued and Variational Analysis, 2019, 27 : 265 - 294
  • [7] On M-decomposable sets
    Soltan, Valeriu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (02)
  • [8] On OM-decomposable sets
    A. N. Iusem
    M. I. Todorov
    Computational and Applied Mathematics, 2018, 37 : 2837 - 2844
  • [9] On Motzkin decomposable sets and functions
    Goberna, M. A.
    Martinez-Legaz, J. E.
    Todorov, M. I.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (02) : 525 - 537
  • [10] On OM-decomposable sets
    Iusem, A. N.
    Todorov, M. I.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 2837 - 2844