Synthetic Learning Set for Object Pose Estimation: Initial Experiments

被引:0
|
作者
Lee, Joo-Haeng [1 ,2 ]
Yun, Woo-Han [1 ]
Lee, Jaeyeon [1 ]
Kim, Jaehong [1 ]
机构
[1] ETRI, Human Machine Interact Grp, Daejeon 34129, South Korea
[2] Univ Sci & Technol, Comp Software Dept, Daejeon 34113, South Korea
关键词
Synthetic learning set; pose estimation; machine learning; robot manipulation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We summarize a method to generate a synthetic learning set for object pose estimation in robotic manipulation tasks. Exploiting modern computer graphics techniques, our synthetic learning set satisfies the requirements both in quantitative diversity and qualitative precision. We report the partial results of initial experiments and discuss some future research directions.
引用
收藏
页码:106 / 108
页数:3
相关论文
共 50 条
  • [41] Synthetic Depth Image-Based Category-Level Object Pose Estimation With Effective Pose Decoupling and Shape Optimization
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [42] μPose: Synthetic Dataset for Human Pose Estimation in Microgravity Environments
    Cardoso, Luis Fernando de Souza
    Schwandt, Tobias
    Broll, Wolfgang
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1557 - 1562
  • [43] CullNet: Calibrated and Pose Aware Confidence Scores for Object Pose Estimation
    Gupta, Kartik
    Petersson, Lars
    Hartley, Richard
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2758 - 2766
  • [44] Object pose estimation in underwater acoustic images
    Murino, V
    Foresti, GL
    Trucco, A
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL I, 1997, : 873 - 876
  • [45] Sensor Planning for Object Pose Estimation and Identification
    Ma, Jeremy
    Burdick, Joel
    2009 IEEE INTERNATIONAL WORKSHOP ON ROBOTIC AND SENSORS ENVIRONMENTS (ROSE 2009), 2009, : 69 - 74
  • [46] Neural Correspondence Field for Object Pose Estimation
    Huang, Lin
    Hodan, Tomas
    Ma, Lingni
    Zhang, Linguang
    Tran, Luan
    Twigg, Christopher
    Wu, Po-Chen
    Yuan, Junsong
    Keskin, Cem
    Wang, Robert
    COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 585 - 603
  • [47] Parametrized SOMs for object recognition and pose estimation
    Saalbach, A
    Heidemann, G
    Ritter, H
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 902 - 907
  • [48] Turbo Learning Framework for Human-Object Interactions Recognition and Human Pose Estimation
    Feng, Wei
    Liu, Wentao
    Li, Tong
    Peng, Jing
    Qian, Chen
    Hu, Xiaolin
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 898 - 905
  • [49] Real-Time Object Pose Estimation with Pose Interpreter Networks
    Wu, Jimmy
    Zhou, Bolei
    RusseLL, Rebecca
    Kee, Vincent
    Wagner, Syler
    Hebert, Mitchell
    Torralba, Antonio
    Johnson, David M. S.
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 6798 - 6805
  • [50] Automatic Dataset Generation for Object Pose Estimation
    Tshilombo, Kalenga-Bimpambu
    Yoshiyasu, Yusuke
    Gabas, Antonio
    Suzui, Kota
    SA'18: SIGGRAPH ASIA 2018 POSTERS, 2018,