Synthetic Learning Set for Object Pose Estimation: Initial Experiments

被引:0
|
作者
Lee, Joo-Haeng [1 ,2 ]
Yun, Woo-Han [1 ]
Lee, Jaeyeon [1 ]
Kim, Jaehong [1 ]
机构
[1] ETRI, Human Machine Interact Grp, Daejeon 34129, South Korea
[2] Univ Sci & Technol, Comp Software Dept, Daejeon 34113, South Korea
关键词
Synthetic learning set; pose estimation; machine learning; robot manipulation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We summarize a method to generate a synthetic learning set for object pose estimation in robotic manipulation tasks. Exploiting modern computer graphics techniques, our synthetic learning set satisfies the requirements both in quantitative diversity and qualitative precision. We report the partial results of initial experiments and discuss some future research directions.
引用
收藏
页码:106 / 108
页数:3
相关论文
共 50 条
  • [11] Object pose estimation in industrial environments using a synthetic data generation pipeline
    Belke, Manuel
    Blanke, Philipp
    Storms, Simon
    Herfs, Werner
    2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 435 - 438
  • [12] Towards Learning 3d Object Detection and 6d Pose Estimation from Synthetic Data
    Rudorfer, Martin
    Neumann, Lukas
    Krueger, Joerg
    2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2019, : 1540 - 1543
  • [13] When Regression Meets Manifold Learning for Object Recognition and Pose Estimation
    Bui, Mai
    Zakharov, Sergey
    Albarqouni, Shadi
    Ilic, Slobodan
    Navab, Nassir
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 6140 - 6146
  • [14] Harmonious Feature Learning for Interactive Hand-Object Pose Estimation
    Lin, Zhifeng
    Ding, Changxing
    Yao, Huan
    Kuang, Zengsheng
    Huang, Shaoli
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 12989 - 12998
  • [15] Learning Descriptors for Object Recognition and 3D Pose Estimation
    Wohlhart, Paul
    Lepetit, Vincent
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 3109 - 3118
  • [16] Joint Learning of Object Detection and Pose Estimation using Augmented Autoencoder
    Hayashi, Ryota
    Shimokura, Asei
    Matsumoto, Takuya
    Ukita, Norimichi
    PROCEEDINGS OF 17TH INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS (MVA 2021), 2021,
  • [17] Learning Local RGB-to-CAD Correspondences for Object Pose Estimation
    Georgakis, Georgios
    Karanam, Srikrishna
    Wu, Ziyan
    Kosecka, Jana
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8966 - 8975
  • [18] Multi-path Learning for Object Pose Estimation Across Domains
    Sundermeyer, Martin
    Durner, Maximilian
    Puang, En Yen
    Marton, Zoltan-Csaba
    Vaskevicius, Narunas
    Arras, Kai O.
    Triebel, Rudolph
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 13913 - 13922
  • [19] GPD: Learning Geometric Primitive Deformation for Unseen Object Pose Estimation
    Meng, Qiwei
    Gu, Jason
    Liu, Yun-Hui
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024,
  • [20] Object 6-DoF pose estimation using auxiliary learning
    Chen M.
    Gai S.
    Da F.
    Yu J.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (06): : 901 - 914