Synthetic Learning Set for Object Pose Estimation: Initial Experiments

被引:0
|
作者
Lee, Joo-Haeng [1 ,2 ]
Yun, Woo-Han [1 ]
Lee, Jaeyeon [1 ]
Kim, Jaehong [1 ]
机构
[1] ETRI, Human Machine Interact Grp, Daejeon 34129, South Korea
[2] Univ Sci & Technol, Comp Software Dept, Daejeon 34113, South Korea
关键词
Synthetic learning set; pose estimation; machine learning; robot manipulation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We summarize a method to generate a synthetic learning set for object pose estimation in robotic manipulation tasks. Exploiting modern computer graphics techniques, our synthetic learning set satisfies the requirements both in quantitative diversity and qualitative precision. We report the partial results of initial experiments and discuss some future research directions.
引用
收藏
页码:106 / 108
页数:3
相关论文
共 50 条
  • [31] Pose estimation in automatic object recognition
    Chang, CY
    Hoepner, R
    OPTICAL PATTERN RECOGNITION VII, 1996, 2752 : 233 - 240
  • [32] Estimation and prediction for moving object pose
    Sun, C. K.
    Sun, P. F.
    Zhang, Z. M.
    Wang, P.
    PROCEEDINGS OF CHINA DISPLAY/ASIA DISPLAY 2011, 2011, : 116 - 122
  • [33] Observability Properties of Object Pose Estimation
    Avant, Trevor
    Morgansen, Kristi A.
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 5134 - 5140
  • [34] 3D Object Pose Estimation Using Viewpoint Generative Learning
    Thachasongtham, Dissaphong
    Yoshida, Takumi
    de Sorbier, Francois
    Saito, Hideo
    IMAGE ANALYSIS, SCIA 2013: 18TH SCANDINAVIAN CONFERENCE, 2013, 7944 : 512 - 521
  • [35] Certifiable Object Pose Estimation: Foundations, Learning Models, and Self-Training
    Talak, Rajat
    Peng, Lisa R.
    Carlone, Luca
    IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (04) : 2805 - 2824
  • [36] Pose Selection for Underwater Object Detection, Pose Estimation, and Tracking
    Teigland, Hakon
    Hassani, Vahid
    Tore Moller, Ments
    IEEE ACCESS, 2024, 12 : 142331 - 142342
  • [37] Learning 6D Object Pose Estimation Using 3D Object Coordinates
    Brachmann, Eric
    Krull, Alexander
    Michel, Frank
    Gumhold, Stefan
    Shotton, Jamie
    Rother, Carsten
    COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 536 - 551
  • [38] Multi-Object Recognition and 6-DoF Pose Estimation Based on Synthetic Datasets
    Hu G.
    Ou M.
    Li Z.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2024, 52 (04): : 42 - 50
  • [39] Point Cloud Based Initial Relative Pose Acquiring Process for Relative Pose Estimation of Non-Cooperative Object in Space
    Liu Z.-Y.
    Guo Y.-N.
    Liang W.-K.
    Xu H.
    Guo, Yan-Ning (guoyn@hit.edu.cn), 1600, China Spaceflight Society (41): : 1314 - 1321
  • [40] Feature space trajectory for distorted-object classification and pose estimation in synthetic aperture radar
    Casasent, D
    Shenoy, R
    OPTICAL ENGINEERING, 1997, 36 (10) : 2719 - 2728