Synthetic Learning Set for Object Pose Estimation: Initial Experiments

被引:0
|
作者
Lee, Joo-Haeng [1 ,2 ]
Yun, Woo-Han [1 ]
Lee, Jaeyeon [1 ]
Kim, Jaehong [1 ]
机构
[1] ETRI, Human Machine Interact Grp, Daejeon 34129, South Korea
[2] Univ Sci & Technol, Comp Software Dept, Daejeon 34113, South Korea
关键词
Synthetic learning set; pose estimation; machine learning; robot manipulation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We summarize a method to generate a synthetic learning set for object pose estimation in robotic manipulation tasks. Exploiting modern computer graphics techniques, our synthetic learning set satisfies the requirements both in quantitative diversity and qualitative precision. We report the partial results of initial experiments and discuss some future research directions.
引用
收藏
页码:106 / 108
页数:3
相关论文
共 50 条
  • [1] Methods of RVD object pose estimation and experiments
    Shang, Yang
    He, Yan
    Wang, Weihua
    Yu, Qifeng
    SECOND INTERNATIONAL CONFERENCE ON SPACE INFORMATION TECHNOLOGY, PTS 1-3, 2007, 6795
  • [2] Learning Orientation Distributions for Object Pose Estimation
    Okorn, Brian
    Xu, Mengyun
    Hebert, Martial
    Held, David
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10580 - 10587
  • [3] Object Recognition and Pose Estimation base on Deep Learning
    Xue, Li-wei
    Chen, Li-guo
    Liu, Ji-zhu
    Wang, Yang-jun
    Shen, Qi
    Huang, Hai-bo
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 1288 - 1293
  • [4] Online Learning of Visibility and Appearance for Object Pose Estimation
    Lee, Bhoram
    Lee, Daniel D.
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 2792 - 2798
  • [5] Deep Learning-Based 6-DoF Object Pose Estimation Considering Synthetic Dataset
    Zheng, Tianyu
    Zhang, Chunyan
    Zhang, Shengwen
    Wang, Yanyan
    SENSORS, 2023, 23 (24)
  • [6] Underwater Object Detection and Pose Estimation using Deep Learning
    Jeon, MyungHwan
    Lee, Yeongjun
    Shin, Young-Sik
    Jang, Hyesu
    Kim, Ayoung
    IFAC PAPERSONLINE, 2019, 52 (21): : 78 - 81
  • [7] Planar Pose Estimation Using Object Detection and Reinforcement Learning
    Rasmussen, Frederik Norby
    Andersen, Sebastian Terp
    Grossmann, Bjarne
    Boukas, Evangelos
    Nalpantidis, Lazaros
    COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 353 - 365
  • [8] Pose Guided RGBD Feature Learning for 3D Object Pose Estimation
    Balntas, Vassileios
    Doumanoglou, Andreas
    Sahin, Caner
    Sock, Juil
    Kouskouridas, Rigas
    Kim, Tae-Kyun
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3876 - 3884
  • [9] Transfer Learning for Driver Pose Estimation from Synthetic Data
    Sagmeister, Daniel
    Schoerkhuber, Dominik
    Nezveda, Matej
    Stiedl, Fabian
    Schimkowitsch, Maria
    Gelautz, Margrit
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [10] Object recognition and pose estimation for modular manipulation system: overview and initial results
    Yun, Woo-han
    Lee, Jaeyeon
    Lee, Joo-Haeng
    Kim, Jaehong
    2017 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2017, : 198 - 201