The rigged Hilbert space approach to the Lippmann-Schwinger equation: II. The analytic continuation of the Lippmann-Schwinger bras and kets

被引:9
|
作者
de la Madrid, Rafael [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 15期
关键词
D O I
10.1088/0305-4470/39/15/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analytic continuation of the Lippmann-Schwinger bras and kets is obtained and characterized. It is shown that the natural mathematical setting for the analytic continuation of the solutions of the Lippmann-Schwinger equation is the rigged Hilbert space rather than just the Hilbert space. It is also argued that this analytic continuation entails the imposition of a time asymmetric boundary condition upon the group time evolution, resulting in a semigroup time evolution. Physically, the semigroup time evolution is simply a (retarded or advanced) propagator.
引用
收藏
页码:3981 / 4009
页数:29
相关论文
共 50 条
  • [21] NOTE ON NUMERICAL SOLUTION OF LIPPMANN-SCHWINGER EQUATION
    MONGAN, TR
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1969, 63 (02): : 539 - &
  • [22] ON THE LIPPMANN-SCHWINGER EQUATION IN LIOUVILLE SPACE - PI-SUBDYNAMICS
    VEGUILLAS, J
    MUGA, JG
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1988, 150 (01) : 172 - 198
  • [23] On a Class of Variational Principles for Solving the Lippmann-Schwinger Equation
    Horacek, Jiri
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 261 - 264
  • [24] Solutions of the Lippmann-Schwinger equation for confocal parabolic billiards
    Ruiz-Biestro, Alberto
    Gutierrez-Vega, Julio C.
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [25] Lippmann-Schwinger description of multiphoton ionization
    Ivanov, IA
    Kheifets, AS
    PHYSICAL REVIEW A, 2005, 71 (04):
  • [26] Time dependence of Lippmann-Schwinger states
    Dubey, RK
    Menon, VJ
    Tripathi, DN
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2005, 43 (01) : 63 - 66
  • [27] An exact solution of the Lippmann-Schwinger equation in one dimension
    Yang, TR
    Dvoynenko, MM
    Goncharenko, AV
    Lozovski, VZ
    AMERICAN JOURNAL OF PHYSICS, 2003, 71 (01) : 64 - 71
  • [28] Exact solution to the Lippmann-Schwinger equation for a spheroidal barrier
    Schmidt, Alexandre G. M.
    Maioli, Alan C.
    Azado, Pedro C.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 253
  • [29] Exact solution to Lippmann-Schwinger equation for a circular billiard
    Maioli, A. C.
    Schmidt, Alexandre G. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (12)
  • [30] Recurrent localization networks applied to the Lippmann-Schwinger equation
    Kelly, Conlain
    Kalidindi, Surya R.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192