The rigged Hilbert space approach to the Lippmann-Schwinger equation: II. The analytic continuation of the Lippmann-Schwinger bras and kets

被引:9
|
作者
de la Madrid, Rafael [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 15期
关键词
D O I
10.1088/0305-4470/39/15/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analytic continuation of the Lippmann-Schwinger bras and kets is obtained and characterized. It is shown that the natural mathematical setting for the analytic continuation of the solutions of the Lippmann-Schwinger equation is the rigged Hilbert space rather than just the Hilbert space. It is also argued that this analytic continuation entails the imposition of a time asymmetric boundary condition upon the group time evolution, resulting in a semigroup time evolution. Physically, the semigroup time evolution is simply a (retarded or advanced) propagator.
引用
收藏
页码:3981 / 4009
页数:29
相关论文
共 50 条
  • [31] Description of Heavy Quark Mass by Lippmann-Schwinger Equation
    Tazimi, N.
    Monemzadeh, M.
    Hadizadeh, M. R.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (09) : 2871 - 2877
  • [32] OPTIMIZED CONFORMAL MAPPING APPLIED TO LIPPMANN-SCHWINGER EQUATION
    CHAO, YA
    JACKSON, AD
    PHYSICS LETTERS B, 1973, B 43 (06) : 449 - 452
  • [33] EIGENFUNCTION EXPANSIONS AND LIPPMANN-SCHWINGER FORMULAS
    Gadella, M.
    Kielanowski, P.
    REPORTS ON MATHEMATICAL PHYSICS, 2011, 68 (03) : 251 - 260
  • [34] Generalized Lippmann-Schwinger equation in the fractional quantum mechanics
    Dong, Jianping
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (21)
  • [35] Exact solution to the Lippmann-Schwinger equation for an elliptical billiard
    Maioli, Alan C.
    Schmidt, Alexandre G. M.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 111 : 51 - 62
  • [36] ON THE MODEL SPACE SOLUTION OF A 3-BODY LIPPMANN-SCHWINGER EQUATION
    SAWADA, T
    THUSHIMA, K
    PROGRESS OF THEORETICAL PHYSICS, 1988, 79 (06): : 1378 - 1395
  • [37] Solution of the Lippmann-Schwinger equation in configuration space by a Chebyshev expansion method
    Rawitscher, GH
    Koltracht, I
    Gonzales, RA
    PROCEEDINGS OF THE XVII RCNP INTERNATIONAL SYMPOSIUM ON INNOVATIVE COMPUTATIONAL METHODS IN NUCLEAR MANY-BODY PROBLEMS: TOWARDS A NEW GENERATION OF PHYSICS IN FINITE QUANTUM SYSTEMS, 1998, : 188 - 195
  • [38] 3-BODY LIPPMANN-SCHWINGER EQUATIONS
    ADHIKARI, SK
    GLOCKLE, W
    PHYSICAL REVIEW C, 1980, 21 (01): : 54 - 57
  • [39] INTEGRATION OF THE LIPPMANN-SCHWINGER EQUATION WITH THE MONTE-CARLO METHOD
    SALOMON, M
    PHYSICAL REVIEW A, 1983, 28 (06): : 3645 - 3647
  • [40] The Time-Domain Lippmann-Schwinger Equation and Convolution Quadrature
    Lechleiter, Armin
    Monk, Peter
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (02) : 517 - 540