An exact solution of the Lippmann-Schwinger equation in one dimension

被引:19
|
作者
Yang, TR
Dvoynenko, MM
Goncharenko, AV
Lozovski, VZ
机构
[1] Natl Taiwan Normal Univ, Dept Phys, Taipei 117, Taiwan
[2] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine
关键词
D O I
10.1119/1.1509423
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We consider a one-dimensional scattering problem and establish a system of two integral equations for the local (self-consistent) electric field. The equations are derived using the standard Green's function method. Their solution yields the local fields at any point of the system. To illustrate the efficacy of this approach, we apply it to a film and obtain analytical solutions that are identical to the Fabry-Perot solution. Some potential applications of the approach are also discussed. (C) 2003 American Association of Physics Teachers.
引用
收藏
页码:64 / 71
页数:8
相关论文
共 50 条
  • [1] Exact solution to the Lippmann-Schwinger equation for a spheroidal barrier
    Schmidt, Alexandre G. M.
    Maioli, Alan C.
    Azado, Pedro C.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 253
  • [2] Exact solution to Lippmann-Schwinger equation for a circular billiard
    Maioli, A. C.
    Schmidt, Alexandre G. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (12)
  • [3] Exact solution to the Lippmann-Schwinger equation for an elliptical billiard
    Maioli, Alan C.
    Schmidt, Alexandre G. M.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 111 : 51 - 62
  • [4] UNIQUENESS OF THE SOLUTION OF THE LIPPMANN-SCHWINGER EQUATION
    MUKHERJEE, S
    PRAMANA, 1982, 18 (06) : 495 - 500
  • [5] On the numerical solution of Lippmann-Schwinger equation
    Khubezhty, SS
    DIFFERENTIAL EQUATIONS, 2004, 40 (01) : 111 - 119
  • [6] LIPPMANN-SCHWINGER EQUATION
    MUKHERJEE, S
    PRAMANA, 1981, 16 (01) : 81 - 89
  • [7] NOTE ON NUMERICAL SOLUTION OF LIPPMANN-SCHWINGER EQUATION
    MONGAN, TR
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1969, 63 (02): : 539 - &
  • [8] UNIQUENESS OF THE LIPPMANN-SCHWINGER EQUATION
    MUKHERJEE, S
    PHYSICS LETTERS B, 1978, 80 (1-2) : 73 - 74
  • [9] Inverse scattering theory: Renormalization of the Lippmann-Schwinger equation for acoustic scattering in one dimension
    Kouri, DJ
    Vijay, A
    PHYSICAL REVIEW E, 2003, 67 (04):
  • [10] SCATTERED WAVE AND LIPPMANN-SCHWINGER EQUATION
    MUKHERJEE, S
    PHYSICS LETTERS A, 1981, 83 (01) : 1 - 4