Latin Squares over Quasigroups

被引:2
|
作者
Galatenko, A. V. [1 ]
Nosov, V. A. [1 ]
Pankratiev, A. E. [1 ]
机构
[1] LomonosovMoscow State Univ, Moscow 119991, Russia
关键词
quasigroup; proper family of functions; subquasigroup;
D O I
10.1134/S1995080220020079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a construction that allows generating large families of Latin squares, i.e., Cayley tables of finite quasigroups. This construction generalizes proper families of functions over Abelian groups introduced by Nosov and Pankratiev. We also show that all quasigroups generated by the original construction contain at least one subquasigroup, while the generalized construction generates quasigroups free of subquasigroups.
引用
收藏
页码:194 / 203
页数:10
相关论文
共 50 条
  • [1] Latin Squares over Quasigroups
    A. V. Galatenko
    V. A. Nosov
    A. E. Pankratiev
    Lobachevskii Journal of Mathematics, 2020, 41 : 194 - 203
  • [2] Autoparatopisms of Quasigroups and Latin Squares
    Mendis, Mahamendige Jayama Lalani
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2017, 25 (02) : 51 - 74
  • [3] Small Latin squares, quasigroups, and loops
    McKay, Brendan D.
    Meynert, Alison
    Myrvold, Wendy
    JOURNAL OF COMBINATORIAL DESIGNS, 2007, 15 (02) : 98 - 119
  • [4] Orthogonality of approximate Latin squares and quasigroups
    Im, Bokhee
    Smith, Jonathan D. H.
    NONASSOCIATIVE MATHEMATICS AND ITS APPLICATIONS, 2019, 721 : 165 - 181
  • [5] Cycle Structure of Autotopisms of Quasigroups and Latin Squares
    Stones, Douglas S.
    Vojtechovsky, Petr
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (05) : 227 - 263
  • [6] SPECTRUM OF PARTIAL ADMISSIBILITY OF FINITE QUASIGROUPS (LATIN SQUARES)
    BELYAVSKAYA, GB
    MATHEMATICAL NOTES, 1982, 32 (5-6) : 874 - 880
  • [7] FINITE EMBEDDING THEOREMS FOR PARTIAL LATIN SQUARES, QUASIGROUPS, AND LOOPS
    LINDNER, CC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 394 - &
  • [8] Characterization of polynomially complete quasigroups based on Latin squares for cryptographic transformations
    Artamonov, V. A.
    Chakrabarti, S.
    Pal, S. K.
    DISCRETE APPLIED MATHEMATICS, 2016, 200 : 5 - 17
  • [9] Latin squares over Abelian groups
    Nosov V.A.
    Pankratiev A.E.
    Journal of Mathematical Sciences, 2008, 149 (3) : 1230 - 1234
  • [10] EQUATIONS OVER QUASIGROUPS
    GLUKHOV, MM
    MUKHIN, AI
    SIBERIAN MATHEMATICAL JOURNAL, 1977, 18 (04) : 534 - 541