Small Latin squares, quasigroups, and loops

被引:92
|
作者
McKay, Brendan D. [1 ]
Meynert, Alison
Myrvold, Wendy
机构
[1] Australian Natl Univ, Dept Comp Sci, Canberra, ACT 0200, Australia
[2] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
关键词
Latin square; quasigroup; loop; isotopy; main class; orthogonal;
D O I
10.1002/jcd.20105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the numbers of isotopy classes and main classes of Latin squares, and the numbers of isomorphism classes of quasigroups and loops, up to order 10. The best previous results were for Latin squares of order 8 (Kolesova, Lam, and Thiel, 1990), quasigroups of order 6 (Bower, 2000), and loops of order 7 (Brant and Mullen, 1985). The loops of order 8 have been independently found by "QSCGZ" and Guerin (unpublished, 2001). We also report on the most extensive search so far for a triple of mutually orthogonal Latin squares (MOLS) of order 10. Our computations show that any such triple must have only squares with trivial symmetry groups. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:98 / 119
页数:22
相关论文
共 50 条
  • [1] FINITE EMBEDDING THEOREMS FOR PARTIAL LATIN SQUARES, QUASIGROUPS, AND LOOPS
    LINDNER, CC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 394 - &
  • [2] Latin Squares over Quasigroups
    A. V. Galatenko
    V. A. Nosov
    A. E. Pankratiev
    Lobachevskii Journal of Mathematics, 2020, 41 : 194 - 203
  • [3] Autoparatopisms of Quasigroups and Latin Squares
    Mendis, Mahamendige Jayama Lalani
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2017, 25 (02) : 51 - 74
  • [4] Latin Squares over Quasigroups
    Galatenko, A. V.
    Nosov, V. A.
    Pankratiev, A. E.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (02) : 194 - 203
  • [5] Orthogonality of approximate Latin squares and quasigroups
    Im, Bokhee
    Smith, Jonathan D. H.
    NONASSOCIATIVE MATHEMATICS AND ITS APPLICATIONS, 2019, 721 : 165 - 181
  • [6] Cycle Structure of Autotopisms of Quasigroups and Latin Squares
    Stones, Douglas S.
    Vojtechovsky, Petr
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (05) : 227 - 263
  • [7] SPECTRUM OF PARTIAL ADMISSIBILITY OF FINITE QUASIGROUPS (LATIN SQUARES)
    BELYAVSKAYA, GB
    MATHEMATICAL NOTES, 1982, 32 (5-6) : 874 - 880
  • [8] Characterization of polynomially complete quasigroups based on Latin squares for cryptographic transformations
    Artamonov, V. A.
    Chakrabarti, S.
    Pal, S. K.
    DISCRETE APPLIED MATHEMATICS, 2016, 200 : 5 - 17
  • [9] Quantum quasigroups and loops
    Smith, J. D. H.
    JOURNAL OF ALGEBRA, 2016, 456 : 46 - 75
  • [10] INDUCED TOPOLOGIES FOR QUASIGROUPS AND LOOPS
    BACLAWSK.K
    KAPP, KM
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 45 (02) : 393 - 402