Latin Squares over Quasigroups

被引:2
|
作者
Galatenko, A. V. [1 ]
Nosov, V. A. [1 ]
Pankratiev, A. E. [1 ]
机构
[1] LomonosovMoscow State Univ, Moscow 119991, Russia
关键词
quasigroup; proper family of functions; subquasigroup;
D O I
10.1134/S1995080220020079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a construction that allows generating large families of Latin squares, i.e., Cayley tables of finite quasigroups. This construction generalizes proper families of functions over Abelian groups introduced by Nosov and Pankratiev. We also show that all quasigroups generated by the original construction contain at least one subquasigroup, while the generalized construction generates quasigroups free of subquasigroups.
引用
收藏
页码:194 / 203
页数:10
相关论文
共 50 条
  • [31] Limits of Latin Squares
    Garbe, Frederik
    Hancock, Robert
    Hladky, Jan
    Sharifzadeh, Maryam
    DISCRETE ANALYSIS, 2023, : 1 - 66
  • [32] LATIN SQUARES AND SUPERQUEENS
    HWANG, FK
    LIH, KW
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1983, 34 (01) : 110 - 114
  • [33] Quasirandom Latin squares
    Cooper, Jacob W.
    Kral, Daniel
    Lamaison, Ander
    Mohr, Samuel
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (02) : 298 - 308
  • [34] SYSTEMATIC LATIN SQUARES
    ADDELMAN, S
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1976, A 5 (01): : 27 - 44
  • [35] CRISSCROSS LATIN SQUARES
    HWANG, FK
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 27 (03) : 371 - 375
  • [36] On completing latin squares
    Easton, T
    Parker, RG
    DISCRETE APPLIED MATHEMATICS, 2001, 113 (2-3) : 167 - 181
  • [37] ON TRANSVERSALS IN LATIN SQUARES
    BALASUBRAMANIAN, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 131 : 125 - 129
  • [38] On biembeddings of Latin squares
    Grannell, M. J.
    Griggs, T. S.
    Knor, M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [39] Latin and magic squares
    Emanouilidis, Emanuel
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2005, 36 (05) : 546 - 549
  • [40] Powers of Latin squares
    Emanouilidis, Emanuel
    MATHEMATICAL GAZETTE, 2006, 90 (519): : 478 - 481